Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Immunol ; 260: 109923, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38316201

RESUMO

Celiac Disease (CD) is a T-cell mediated disorder caused by immune response to gluten, although the mechanisms underlying CD progression are still elusive. We analyzed immune cell composition, plasma cytokines, and gliadin-specific T-cell responses in patients with positive serology and normal intestinal mucosa (potential-CD) or villous atrophy (acute-CD), and after gluten-free diet (GFD). We found: an inflammatory signature and the presence of circulating gliadin-specific IFN-γ+ T cells in CD patients regardless of mucosal damage; an increased frequency of IL-10-secreting dendritic cells (DC-10) in the gut and of circulating gliadin-specific IL-10-secreting T cells in potential-CD; IL-10 inhibition increased IFN-γ secretion by gliadin-specific intestinal T cells from acute- and potential-CD. On GFD, inflammatory cytokines normalized, while IL-10-producing T cells accumulated in the gut. We show that IL-10-producing cells are fundamental in controlling pathological T-cell responses to gluten: DC-10 protect the intestinal mucosa from damage and represent a marker of potential-CD.


Assuntos
Doença Celíaca , Humanos , Gliadina , Interleucina-10 , Glutens , Citocinas , Mucosa Intestinal
2.
N Engl J Med ; 385(21): 1929-1940, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34788506

RESUMO

BACKGROUND: Allogeneic hematopoietic stem-cell transplantation is the standard of care for Hurler syndrome (mucopolysaccharidosis type I, Hurler variant [MPSIH]). However, this treatment is only partially curative and is associated with complications. METHODS: We are conducting an ongoing study involving eight children with MPSIH. At enrollment, the children lacked a suitable allogeneic donor and had a Developmental Quotient or Intelligence Quotient score above 70 (i.e., none had moderate or severe cognitive impairment). The children received autologous hematopoietic stem and progenitor cells (HSPCs) transduced ex vivo with an α-L-iduronidase (IDUA)-encoding lentiviral vector after myeloablative conditioning. Safety and correction of blood IDUA activity up to supraphysiologic levels were the primary end points. Clearance of lysosomal storage material as well as skeletal and neurophysiological development were assessed as secondary and exploratory end points. The planned duration of the study is 5 years. RESULTS: We now report interim results. The children's mean (±SD) age at the time of HSPC gene therapy was 1.9±0.5 years. At a median follow-up of 2.10 years, the procedure had a safety profile similar to that known for autologous hematopoietic stem-cell transplantation. All the patients showed prompt and sustained engraftment of gene-corrected cells and had supraphysiologic blood IDUA activity within a month, which was maintained up to the latest follow-up. Urinary glycosaminoglycan (GAG) excretion decreased steeply, reaching normal levels at 12 months in four of five patients who could be evaluated. Previously undetectable levels of IDUA activity in the cerebrospinal fluid became detectable after gene therapy and were associated with local clearance of GAGs. Patients showed stable cognitive performance, stable motor skills corresponding to continued motor development, improved or stable findings on magnetic resonance imaging of the brain and spine, reduced joint stiffness, and normal growth in line with World Health Organization growth charts. CONCLUSIONS: The delivery of HSPC gene therapy in patients with MPSIH resulted in extensive metabolic correction in peripheral tissues and the central nervous system. (Funded by Fondazione Telethon and others; ClinicalTrials.gov number, NCT03488394; EudraCT number, 2017-002430-23.).


Assuntos
Terapia Genética , Transplante de Células-Tronco Hematopoéticas , Iduronidase/metabolismo , Mucopolissacaridose I/terapia , Pré-Escolar , Feminino , Seguimentos , Vetores Genéticos , Glicosaminoglicanos/urina , Humanos , Iduronidase/deficiência , Iduronidase/genética , Lactente , Lentivirus , Masculino , Mucopolissacaridose I/metabolismo , Mutação , Transplante de Células-Tronco , Transplante Autólogo
3.
J Autoimmun ; 138: 103051, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37224733

RESUMO

Tolerogenic dendritic cells play a critical role in promoting antigen-specific tolerance via dampening of T cell responses, induction of pathogenic T cell exhaustion and antigen-specific regulatory T cells. Here we efficiently generate tolerogenic dendritic cells by genetic engineering of monocytes with lentiviral vectors co-encoding for immunodominant antigen-derived peptides and IL-10. These transduced dendritic cells (designated DCIL-10/Ag) secrete IL-10 and efficiently downregulate antigen-specific CD4+ and CD8+ T cell responses from healthy subjects and celiac disease patients in vitro. In addition, DCIL-10/Ag induce antigen-specific CD49b+LAG-3+ T cells, which display the T regulatory type 1 (Tr1) cell gene signature. Administration of DCIL-10/Ag resulted in the induction of antigen-specific Tr1 cells in chimeric transplanted mice and the prevention of type 1 diabetes in pre-clinical disease models. Subsequent transfer of these antigen-specific T cells completely prevented type 1 diabetes development. Collectively these data indicate that DCIL-10/Ag represent a platform to induce stable antigen-specific tolerance to control T-cell mediated diseases.


Assuntos
Diabetes Mellitus Tipo 1 , Interleucina-10 , Animais , Camundongos , Antígenos , Células Dendríticas/metabolismo , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 1/metabolismo , Tolerância Imunológica , Interleucina-10/genética , Interleucina-10/metabolismo , Linfócitos T Reguladores/metabolismo , Humanos , Doença Celíaca
4.
Curr Opin Hematol ; 29(4): 218-224, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35787550

RESUMO

PURPOSE OF REVIEW: This review highlights findings describing the role of interleukin (IL)-10-producing Type 1 regulatory T (Tr1) cells in controlling autoimmune diseases and possible approaches to restore their function and number. RECENT FINDINGS: Reduced frequency and/or function of cell subsets playing a role in Tr1 cell induction (e.g., DC-10 and Bregs), was found in patients with autoimmunity and may impact on Tr1 cell frequency. SUMMARY: IL-10 is a pleiotropic cytokine with fundamental anti-inflammatory functions acting as negative regulator of immune responses. IL-10 is critically involved in the induction and functions of Tr1 cells, a subset of memory CD4+ T cells induced in the periphery to suppress immune responses to a variety of antigens (Ags), including self-, allogeneic, and dietary Ags. Alterations in IL-10-related pathways and/or in the frequency and activities of Tr1 cells have been associated to several autoimmune diseases. We will give an overview of the alterations of IL-10 and IL-10-producing Tr1 cells in Multiple Sclerosis, Type 1 Diabetes, and Celiac Disease, in which similarities in the role of these tolerogenic mechanisms are present. Current and future approaches to overcome Tr1 cell defects and restore tolerance in these diseases will also be discussed.


Assuntos
Doenças Autoimunes , Interleucina-10/imunologia , Linfócitos T Reguladores/imunologia , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Autoimunidade , Humanos
5.
J Allergy Clin Immunol ; 145(4): 1262-1271.e13, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31874182

RESUMO

BACKGROUND: Immune-dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome is a lethal disease caused by mutations in a transcription factor critical for the function of thymus-derived regulatory T (Treg) cells (ie, FOXP3), resulting in impaired Treg function and autoimmunity. At present, hematopoietic stem cell transplantation is the therapy of choice for patients with IPEX syndrome. If not available, multiple immunosuppressive regimens have been used with poor disease-free survival at long-term follow-up. Rapamycin has been shown to suppress peripheral T cells while sparing Treg cells expressing wild-type FOXP3, thereby proving beneficial in the clinical setting of immune dysregulation. However, the mechanisms of immunosuppression selective to Treg cells in patients with IPEX syndrome are unclear. OBJECTIVE: We sought to determine the cellular and molecular basis of the clinical benefit observed under rapamycin treatment in 6 patients with IPEX syndrome with different FOXP3 mutations. METHODS: Phenotype and function of FOXP3-mutated Treg cells from rapamycin-treated patients with IPEX syndrome were tested by flow cytometry and in vitro suppression assays, and the gene expression profile of rapamycin-conditioned Treg cells by droplet-digital PCR. RESULTS: Clinical and histologic improvements in patients correlated with partially restored Treg function, independent of FOXP3 expression or Treg frequency. Expression of TNF-receptor-superfamily-member 18 (TNFRSF18, glucocorticoid-induced TNF-receptor-related) and EBV-induced-3 (EBI3, an IL-35 subunit) in patients' Treg cells increased during treatment as compared with that of Treg cells from untreated healthy subjects. Furthermore inhibition of glucocorticoid-induced TNF-receptor-related and Ebi3 partially reverted in vitro suppression by in vivo rapamycin-conditioned Treg cells. CONCLUSIONS: Rapamycin is able to affect Treg suppressive function via a FOXP3-independent mechanism, thus sustaining the clinical improvement observed in patients with IPEX syndrome under rapamycin treatment.


Assuntos
Diabetes Mellitus Tipo 1/congênito , Diarreia/imunologia , Fatores de Transcrição Forkhead/genética , Doenças Genéticas Ligadas ao Cromossomo X/imunologia , Doenças do Sistema Imunitário/congênito , Imunossupressores/uso terapêutico , Mutação/genética , Sirolimo/uso terapêutico , Linfócitos T Reguladores/imunologia , Movimento Celular , Células Cultivadas , Criança , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Diarreia/tratamento farmacológico , Diarreia/genética , Regulação da Expressão Gênica , Doenças Genéticas Ligadas ao Cromossomo X/tratamento farmacológico , Doenças Genéticas Ligadas ao Cromossomo X/genética , Proteína Relacionada a TNFR Induzida por Glucocorticoide/metabolismo , Humanos , Doenças do Sistema Imunitário/tratamento farmacológico , Doenças do Sistema Imunitário/genética , Doenças do Sistema Imunitário/imunologia , Tolerância Imunológica , Interleucinas/genética , Interleucinas/metabolismo , Ativação Linfocitária , Masculino , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo
6.
Mol Ther ; 27(7): 1215-1227, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31060789

RESUMO

Mucopolysaccharidosis type I (MPS-I) is a severe genetic disease caused by a deficiency of the alpha-L-iduronidase (IDUA) enzyme. Ex vivo hematopoietic stem cell (HSC) gene therapy is a promising therapeutic approach for MPS-I, as demonstrated by preclinical studies performed in naive MPS-I mice. However, after enzyme replacement therapy (ERT), several MPS-I patients develop anti-IDUA immunity that may jeopardize ex vivo gene therapy efficacy. Here we treat MPS-I mice with an artificial immunization protocol to mimic the ERT effect in patients, and we demonstrate that IDUA-corrected HSC engraftment is impaired in pre-immunized animals by IDUA-specific CD8+ T cells spared by pre-transplant irradiation. Conversely, humoral anti-IDUA immunity does not impact on IDUA-corrected HSC engraftment. The inclusion of lympho-depleting agents in pre-transplant conditioning of pre-immunized hosts allowes rescue of IDUA-corrected HSC engraftment, which is proportional to CD8+ T cell eradication. Overall, these data demonstrate the relevance of pre-existing anti-transgene T cell immunity on ex vivo HSC gene therapy, and they suggest the application of tailored immune-depleting treatments, as well as a deeper immunological characterization of patients, to safeguard the therapeutic effects of ex vivo HSC gene therapy in immunocompetent hosts.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Mucopolissacaridose I/terapia , Transgenes/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Células Cultivadas , Modelos Animais de Doenças , Terapia de Reposição de Enzimas/efeitos adversos , Técnicas de Inativação de Genes , Vetores Genéticos , Humanos , Iduronidase/genética , Iduronidase/imunologia , Imunidade Celular/efeitos dos fármacos , Imunização/métodos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Baço/patologia
7.
J Allergy Clin Immunol ; 142(6): 1909-1921.e9, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29705245

RESUMO

BACKGROUND: Forkhead box P3 (FOXP3) is a key transcription factor in regulatory T (Treg) cell function. FOXP3 gene mutations cause immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome, a fatal autoimmune syndrome. FOXP3 has also been proposed to act in effector T (Teff) cells, but to date, this role has not been confirmed. OBJECTIVE: We sought to evaluate the effect of reduced FOXP3 expression on human Treg and Teff cell development and correlate it with IPEX syndrome immune pathology. METHODS: We developed a model of humanized mice (huMice) in which the human hematopoietic system is stably knocked down or knocked out for the FOXP3 gene (knockdown [KD]/knockout [KO] huMice). RESULTS: Because FOXP3-KD/KO was not 100% effective, residual FOXP3 expression in hematopoietic stem progenitor cells was sufficient to give rise to Treg cells with normal expression of FOXP3. However, numerous defects appeared in the Teff cell compartment. Compared with control mice, FOXP3-KD/KO huMice showed altered thymocyte differentiation, with KD/KO thymocytes displaying significantly reduced T-cell receptor (TCR) signaling strength and increased TCR repertoire diversity. Peripheral KD/KO Teff cells were expanded and showed signs of homeostatic proliferation, such as a significantly contracted TCR repertoire, a severely reduced naive compartment, decreased telomeric repeat-binding factor 2 expression, and a skew toward a TH2 profile, resembling an aged immune system. Consistent with results in FOXP3-KD/KO huMice, analysis of patients with IPEX syndrome provided evidence of defects in the Teff cell compartment at both the thymic and peripheral levels. CONCLUSIONS: These findings support an intrinsic role for human FOXP3 in controlling thymocyte maturation and peripheral expansion of Teff cells and reveal a previously undescribed pathogenic mechanism through an altered Teff cell compartment in patients with IPEX syndrome.


Assuntos
Diabetes Mellitus Tipo 1/congênito , Diarreia/imunologia , Fatores de Transcrição Forkhead/imunologia , Doenças Genéticas Ligadas ao Cromossomo X/imunologia , Doenças do Sistema Imunitário/congênito , Linfócitos T/imunologia , Timo/imunologia , Adolescente , Adulto , Animais , Diferenciação Celular , Criança , Pré-Escolar , Diabetes Mellitus Tipo 1/imunologia , Homeostase , Humanos , Doenças do Sistema Imunitário/imunologia , Lactente , Recém-Nascido , Masculino , Camundongos Transgênicos , Adulto Jovem
8.
Blood ; 125(25): 3886-95, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-25833964

RESUMO

Mice reconstituted with a human immune system provide a tractable in vivo model to assess human immune cell function. To date, reconstitution of murine strains with human hematopoietic stem cells (HSCs) from patients with monogenic immune disorders have not been reported. One obstacle precluding the development of immune-disease specific "humanized" mice is that optimal adaptive immune responses in current strains have required implantation of autologous human thymic tissue. To address this issue, we developed a mouse strain that lacks murine major histocompatibility complex class II (MHC II) and instead expresses human leukocyte antigen DR1 (HLA-DR1). These mice displayed improved adaptive immune responses when reconstituted with human HSCs including enhanced T-cell reconstitution, delayed-type hypersensitivity responses, and class-switch recombination. Following immune reconstitution of this novel strain with HSCs from a patient with immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome, associated with aberrant FOXP3 function, mice developed a lethal inflammatory disorder with multiorgan involvement and autoantibody production mimicking the pathology seen in affected humans. This humanized mouse model permits in vivo evaluation of immune responses associated with genetically altered HSCs, including primary immunodeficiencies, and should facilitate the study of human immune pathobiology and the development of targeted therapeutics.


Assuntos
Autoimunidade/imunologia , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/imunologia , Síndromes de Imunodeficiência/imunologia , Animais , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/genética , Transplante de Células-Tronco Hematopoéticas , Humanos , Imuno-Histoquímica , Imunofenotipagem , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transplante Heterólogo
9.
Blood ; 121(9): 1595-603, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23223361

RESUMO

Regulatory T cells (Tregs) play an essential role in preventing autoimmunity. Mutations in the forkhead box protein 3 (FOXP3) gene, which encodes a transcription factor critical for Treg function, result in a severe autoimmune disorder and the production of various autoantibodies in mice and in IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked) patients. However, it is unknown whether Tregs normally suppress autoreactive B cells. To investigate a role for Tregs in maintaining human B-cell tolerance, we tested the reactivity of recombinant antibodies isolated from single B cells isolated from IPEX patients. Characteristics and reactivity of antibodies expressed by new emigrant/transitional B cells from IPEX patients were similar to those from healthy donors, demonstrating that defective Treg function does not impact central B-cell tolerance. In contrast, mature naive B cells from IPEX patients often expressed autoreactive antibodies, suggesting an important role for Tregs in maintaining peripheral B-cell tolerance. T cells displayed an activated phenotype in IPEX patients, including their Treg-like cells, and showed up-regulation of CD40L, PD-1, and inducibl T-cell costimulator (ICOS), which may favor the accumulation of autoreactive mature naive B cells in these patients. Hence, our data demonstrate an essential role for Tregs in the establishment and the maintenance of peripheral B-cell tolerance in humans.


Assuntos
Autoimunidade , Linfócitos B/citologia , Linfócitos B/imunologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/fisiologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Autoimunidade/imunologia , Linfócitos B/patologia , Estudos de Casos e Controles , Células Cultivadas , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Contagem de Linfócitos , Tolerância Periférica/imunologia , Síndrome , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/imunologia , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/patologia
10.
Biochim Biophys Acta Mol Cell Res ; 1871(8): 119818, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39168411

RESUMO

Bone marrow-mesenchymal stromal cells (BM-MSCs) are key components of the BM niche, where they regulate hematopoietic stem progenitor cell (HSPC) homeostasis by direct contact and secreting soluble factors. BM-MSCs also protect the BM niche from excessive inflammation by releasing anti-inflammatory factors and modulating immune cell activity. Thanks to these properties, BM-MSCs were successfully employed in pre-clinical HSPC transplantation models, increasing the rate of HSPC engraftment, accelerating the hematological reconstitution, and reducing the risk of graft failure. However, their clinical use requires extensive in vitro expansion, potentially altering their biological and functional properties. In this work, we analyzed the transcriptomic profile of human BM-MSCs sorted as CD45-, CD105+, CD73+, and CD90+ cells from the BM aspirates of heathy-donors and corresponding ex-vivo expanded BM-MSCs. We found the expression of immune and inflammatory genes downregulated upon cell culture and selected the transcription factor EGR1 to restore the MSC properties. We overexpressed EGR1 in BM-MSCs and performed in vitro tests to study the functional properties of EGR1-overexpressing BM-MSCs. We concluded that EGR1 increased the MSC response to inflammatory stimuli and immune cell control and potentiated the MSC hematopoietic supportive activity in co-culture assay, suggesting that the EGR1-based reprogramming may improve the BM-MSC clinical use.

11.
Mol Ther Methods Clin Dev ; 32(3): 101313, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39282079

RESUMO

Mucopolysaccharidosis type IVB (MPSIVB) is a lysosomal storage disorder caused by ß-galactosidase (ß-GAL) deficiency characterized by severe skeletal and neurological alterations without approved treatments. To develop hematopoietic stem progenitor cell (HSPC) gene therapy (GT) for MPSIVB, we designed lentiviral vectors (LVs) encoding human ß-GAL to achieve supraphysiological release of the therapeutic enzyme in human HSPCs and metabolic correction of diseased cells. Transduced HSPCs displayed proper colony formation, proliferation, and differentiation capacity, but their progeny failed to release the enzyme at supraphysiological levels. Therefore, we tested alternative LVs to overexpress an enhanced ß-GAL deriving from murine (LV-enhGLB1) and human selectively mutated GLB1 sequences (LV-mutGLB1). Only human HSPCs transduced with LV-enhGLB1 overexpressed ß-GAL in vitro and in vivo without evidence of overexpression-related toxicity. Their hematopoietic progeny efficiently released ß-GAL, allowing the cross-correction of defective cells, including skeletal cells. We found that the low levels of human GLB1 mRNA in human hematopoietic cells and the improved stability of the enhanced ß-GAL contribute to the increased efficacy of LV-enhGLB1. Importantly, the enhanced ß-GAL enzyme showed physiological lysosomal trafficking in human cells and was not associated with increased immunogenicity in vitro. These results support the use of LV-enhGLB1 for further HSPC-GT development and future clinical translation to treat MPSIVB multisystem disease.

12.
Nat Cell Biol ; 26(5): 719-730, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38594587

RESUMO

During embryonic development, blood cells emerge from specialized endothelial cells, named haemogenic endothelial cells (HECs). As HECs are rare and only transiently found in early developing embryos, it remains difficult to distinguish them from endothelial cells. Here we performed transcriptomic analysis of 28- to 32-day human embryos and observed that the expression of Fc receptor CD32 (FCGR2B) is highly enriched in the endothelial cell population that contains HECs. Functional analyses using human embryonic and human pluripotent stem cell-derived endothelial cells revealed that robust multilineage haematopoietic potential is harboured within CD32+ endothelial cells and showed that 90% of CD32+ endothelial cells are bona fide HECs. Remarkably, these analyses indicated that HECs progress through different states, culminating in FCGR2B expression, at which point cells are irreversibly committed to a haematopoietic fate. These findings provide a precise method for isolating HECs from human embryos and human pluripotent stem cell cultures, thus allowing the efficient generation of haematopoietic cells in vitro.


Assuntos
Desenvolvimento Embrionário , Hematopoese , Receptores de IgG , Humanos , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/citologia , Desenvolvimento Embrionário/genética , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Hemangioblastos/metabolismo , Hemangioblastos/citologia , Hematopoese/genética , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Receptores de IgG/metabolismo , Receptores de IgG/genética , Transcriptoma
13.
Eur J Immunol ; 41(4): 1120-31, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21400500

RESUMO

Mutations of forkhead box p3 (FOXP3), the master gene for naturally occurring regulatory T cells (nTregs), are responsible for the impaired function of nTregs, resulting in an autoimmune disease known as the immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome. The relevance of other peripheral tolerance mechanisms, such as the presence and function of type 1 regulatory T (Tr1) cells, the major adaptive IL-10-producing Treg subset, in patients with IPEX syndrome remains to be clarified. FOXP3(mutated) Tr1-polarized cells, differentiated in vitro from CD4(+) T cells of four IPEX patients, were enriched in IL-10(+) IL-4(-) IFN-γ(+) T cells, a cytokine production profile specific for Tr1 cells, and expressed low levels of FOXP3 and high levels of Granzyme-B. IPEX Tr1 cells were hypoproliferative and suppressive, thus indicating that FOXP3 mutations did not impair their function. Furthermore, we isolated Tr1 cell clones from the peripheral blood of one FOXP3(null) patient, demonstrating that Tr1 cells are present in vivo and they can be expanded in vitro in the absence of WT FOXP3. Overall, our results (i) show that functional Tr1 cells differentiate independently of FOXP3, (ii) confirm that human Tr1 and nTregs are distinct T-cell lineages, and (iii) suggest that under favorable conditions Tr1 cells could exert regulatory functions in IPEX patients.


Assuntos
Diferenciação Celular , Enterite/imunologia , Fatores de Transcrição Forkhead/genética , Doenças Genéticas Ligadas ao Cromossomo X/imunologia , Mutação , Poliendocrinopatias Autoimunes/imunologia , Linfócitos T Reguladores/imunologia , Linhagem da Célula , Células Cultivadas , Enterite/genética , Fatores de Transcrição Forkhead/imunologia , Doenças Genéticas Ligadas ao Cromossomo X/genética , Humanos , Imunidade Inata , Subunidade alfa de Receptor de Interleucina-2/imunologia , Poliendocrinopatias Autoimunes/genética , Síndrome , Linfócitos T Reguladores/citologia
14.
Front Immunol ; 13: 952715, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090979

RESUMO

The immunological events leading to type 1 diabetes (T1D) are complex and heterogeneous, underscoring the necessity to study rare cases to improve our understanding. Here, we report the case of a 16-year-old patient who showed glycosuria during a regular checkup. Upon further evaluation, stage 2 T1D, autoimmune thrombocytopenic purpura (AITP), and common variable immunodeficiency (CVID) were diagnosed. The patient underwent low carb diet, losing > 8 kg, and was placed on Ig replacement therapy. Anti-CD20 monoclonal antibody (Rituximab, RTX) was administered 2 years after diagnosis to treat peripheral polyneuropathy, whereas an atypical mycobacteriosis manifested 4 years after diagnosis and was managed with prolonged antibiotic treatment. In the fifth year of monitoring, the patient progressed to insulin dependency despite ZnT8A autoantibody resolution and IA-2A and GADA autoantibody decline. The patient had low T1D genetic risk score (GRS = 0.22817) and absence of human leukocyte antigen (HLA) DR3/DR4-DQ8. Genetic analysis identified the monoallelic mutation H159Y in TNFRSF13C, a gene encoding B-cell activating factor receptor (BAFFR). Significant reduced blood B-cell numbers and BAFFR levels were observed in line with a dysregulation in BAFF-BAFFR signaling. The elevated frequency of PD-1+ dysfunctional Tfh cells composed predominantly by Th1 phenotype was observed at disease onset and during follow-up. This case report describes a patient progressing to T1D on a BAFFR-mediated immunodysregulatory background, suggesting a role of BAFF-BAFFR signaling in islet-specific tolerance and T1D progression.


Assuntos
Diabetes Mellitus Tipo 1 , Adolescente , Autoanticorpos , Fator Ativador de Células B/genética , Humanos , Insulina/genética , Mutação
15.
Blood ; 114(19): 4138-41, 2009 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-19738030

RESUMO

Forkhead box P3 (FOXP3) is constitutively expressed by CD4(+)CD25(hi) regulatory T cells (nTregs). Mutations of FOXP3 cause a severe autoimmune syndrome known as immune dysregulation polyendocrinopathy enteropathy X-linked, in which nTregs are absent or dysfunctional. Whether FOXP3 is essential for both differentiation and function of human nTreg cells remains to be demonstrated. Because FOXP3 is an X-linked gene subject to X-chromosome inactivation (XCI), we studied 9 healthy female carriers of FOXP3 mutations to investigate the role of wild-type (WT) versus mutated FOXP3 in different cell subsets. Analysis of active WT versus mutated (mut)-FOXP3 allele distribution revealed a random pattern of XCI in peripheral blood lymphocytes and in naive and memory CD4(+)T cells, whereas nTregs expressed only the active WT-FOXP3. These data demonstrate that expression of WT-FOXP3 is indispensable for the presence of a normal nTreg compartment and suggest that FOXP3 is not necessary for effector T-cell differentiation in humans.


Assuntos
Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Mutação , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Adulto , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Doenças Autoimunes/patologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Estudos de Casos e Controles , Diferenciação Celular , Feminino , Fatores de Transcrição Forkhead/imunologia , Genes Ligados ao Cromossomo X , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/imunologia , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Heterozigoto , Humanos , Masculino , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/patologia , Linfócitos T Reguladores/patologia , Inativação do Cromossomo X
16.
J Allergy Clin Immunol ; 126(6): 1242-51, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21036387

RESUMO

BACKGROUND: Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) is a primary immunodeficiency with autoimmunity caused by mutations in forkhead box P3 (FOXP3), which encodes a transcription factor involved in regulatory T (Treg) cell function. The mechanistic basis for how different mutations in FOXP3 cause distinct manifestations of IPEX remains unclear. OBJECTIVE: To determine whether 3 different point mutants of FOXP3 that cause severe or mild IPEX differ in their ability to reprogram conventional T cells into Treg cells. METHODS: Human CD4(+) T cells were transduced with wild-type or point mutant forms of FOXP3, and changes in cell surface marker expression, cytokine production, proliferation and suppressive capacity were assessed. Ex vivo T(H)17 cells were also transduced with different forms of FOXP3 to monitor changes in IL-17 production. RESULTS: The forkhead mutant F373A failed to upregulate CD25 and CCR4, did not suppress cytokine production, and induced suppressive activity less effectively than wild-type FOXP3. In contrast, although the forkhead mutant R347H was also defective in upregulation of CD25, it suppressed the production of cytokines, conferred suppressive capacity on CD4(+) T cells, and suppressed IL-17 production. F324L, a mutant outside the forkhead domain associated with mild IPEX, was equivalent to wild-type FOXP3 in all aspects tested. CONCLUSION: Mutations in FOXP3 that cause IPEX do not uniformly abrogate the ability of FOXP3 to regulate transcription and drive the development of Treg cells. These data support the notion that factors in addition to functional changes in Treg cells, such as alterations in conventional T cells, are involved in the pathogenesis of IPEX.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Síndromes de Imunodeficiência/genética , Proteínas Mutantes/metabolismo , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/metabolismo , Adolescente , Antígenos CD4/biossíntese , Proliferação de Células , Transdiferenciação Celular/genética , Células Cultivadas , Criança , Citocinas/genética , Citocinas/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Humanos , Síndromes de Imunodeficiência/imunologia , Síndromes de Imunodeficiência/patologia , Síndromes de Imunodeficiência/fisiopatologia , Terapia de Imunossupressão , Proteínas Mutantes/genética , Proteínas Mutantes/imunologia , Mutação Puntual/genética , Poliendocrinopatias Autoimunes , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/patologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Transgenes/genética , Adulto Jovem
17.
Front Pediatr ; 9: 612760, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33692972

RESUMO

Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome is a rare monogenic autoimmune disease with variable clinical manifestations, ranging from early-onset severe autoimmunity, including enteropathy, eczema, and type 1 diabetes, to late-onset or atypical symptoms. Despite the clinical heterogeneity, the unifying feature of IPEX is mutation of the FOXP3 gene, which encodes a transcription factor essential for maintenance of thymus-derived regulatory T cells (Tregs). In IPEX patients, Tregs can be present, although unstable and impaired in function, unable to inhibit proliferation and cytokine production of effector T (Teff) cells. Mutated FOXP3 can also disrupt other compartments: FOXP3-deficient Teff cells proliferate more than the wild-type counterpart, display altered T-cell-receptor signaling response, a reduced T-naïve compartment and a skew toward a Th2 profile. Due to FOXP3 mutations, the frequency of autoreactive B cells is increased and the IgA and IgE production is altered, together with early emergence of tissue-specific autoantibodies. Recently, the awareness of the wide clinical spectrum of IPEX improved the diagnostic tools. In cases presenting with enteropathy, histological evaluation is helpful, although there are no pathognomonic signs of disease. On the other hand, the study of FOXP3 expression and in vitro Treg function, as well as the detection of specific circulating autoantibodies, is recommended to narrow the differential diagnosis. Nowadays, Sanger sequencing should be limited to cases presenting with the classical triad of symptoms; otherwise, next-generation sequencing is recommended, given the cost-effectiveness and the advantage of excluding IPEX-like syndromes. The latter approach could be time spearing in children with severe phenotypes and candidate to advanced therapies.

18.
EMBO Mol Med ; 13(10): e13598, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34459560

RESUMO

The immunosuppressive microenvironment surrounding tumor cells represents a key cause of treatment failure. Therefore, immunotherapies aimed at reprogramming the immune system have largely spread in the past years. We employed gene transfer into hematopoietic stem and progenitor cells to selectively express anti-tumoral cytokines in tumor-infiltrating monocytes/macrophages. We show that interferon-γ (IFN-γ) reduced tumor progression in mouse models of B-cell acute lymphoblastic leukemia (B-ALL) and colorectal carcinoma (MC38). Its activity depended on the immune system's capacity to respond to IFN-γ and drove the counter-selection of leukemia cells expressing surrogate antigens. Gene-based IFN-γ delivery induced antigen presentation in the myeloid compartment and on leukemia cells, leading to a wave of T cell recruitment and activation, with enhanced clonal expansion of cytotoxic CD8+ T lymphocytes. The activity of IFN-γ was further enhanced by either co-delivery of tumor necrosis factor-α (TNF-α) or by drugs blocking immunosuppressive escape pathways, with the potential to obtain durable responses.


Assuntos
Leucemia , Neoplasias , Animais , Apresentação de Antígeno , Interferon gama , Camundongos , Células Mieloides , Microambiente Tumoral , Fator de Necrose Tumoral alfa
19.
Mol Ther ; 17(6): 1039-52, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19293777

RESUMO

RNA interference (RNAi) has tremendous potential for investigating gene function and developing new therapies. However, the design and validation of proficient vehicles for stable and safe microRNA (miR) and small interfering RNA (siRNA) delivery into relevant target cells remains an active area of investigation. Here, we developed a lentiviral platform to efficiently coexpress one or more natural/artificial miR together with a gene of interest from constitutive or regulated polymerase-II (Pol-II) promoters. By swapping the stem-loop (sl) sequence of a selected primary transcript (pri-miR) with that of other miR or replacing the stem with an siRNA of choice, we consistently obtained robust expression of the chimeric/artificial miR in several cell types. We validated our platform transducing a panel of engineered cells stably expressing sensitive reporters for miR activity and on a natural target. This approach allowed us to quantitatively assess at steady state the target suppression activity and expression level of each delivered miR and to compare it to those of endogenous miR. Exogenous/artificial miR reached the concentration and activity typical of highly expressed natural miR without perturbing endogenous miR maturation or regulation. Finally, we demonstrate the robust performance of the platform reversing the anergic/suppressive phenotype of human primary regulatory T cells (Treg) by knocking-down their master gene Forkhead Transcription Factor P3 (FOXP3).


Assuntos
Vetores Genéticos/genética , Lentivirus/genética , MicroRNAs/genética , RNA Interferente Pequeno/genética , Transdução Genética/métodos , Western Blotting , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular , Células Cultivadas , Citometria de Fluxo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Células HeLa , Humanos , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Reação em Cadeia da Polimerase , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
20.
Front Immunol ; 11: 2194, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33133064

RESUMO

The development of novel approaches to control unwanted immune responses represents an ambitious goal in the management of a number of clinical conditions, including autoimmunity, autoinflammatory diseases, allergies and replacement therapies, in which the T cell response to self or non-harmful antigens threatens the physiological function of tissues and organs. Current treatments for these conditions rely on the use of non-specific immunosuppressive agents and supportive therapies, which may efficiently dampen inflammation and compensate for organ dysfunction, but they require lifelong treatments not devoid of side effects. These limitations induced researchers to undertake the development of definitive and specific solutions to these disorders: the underlying principle of the novel approaches relies on the idea that empowering the tolerogenic arm of the immune system would restore the immune homeostasis and control the disease. Researchers effort resulted in the development of cell-free strategies, including gene vaccination, protein-based approaches and nanoparticles, and an increasing number of clinical trials tested the ability of adoptive transfer of regulatory cells, including T and myeloid cells. Here we will provide an overview of the most promising approaches currently under development, and we will discuss their potential advantages and limitations. The field is teaching us that the success of these strategies depends primarily on our ability to dampen antigen-specific responses without impairing protective immunity, and to manipulate directly or indirectly the immunomodulatory properties of antigen presenting cells, the ultimate in vivo mediators of tolerance.


Assuntos
Transferência Adotiva , Autoantígenos/imunologia , Doenças Autoimunes , Dessensibilização Imunológica , Tolerância Imunológica , Células Mieloides , Linfócitos T Reguladores , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Humanos , Células Mieloides/imunologia , Células Mieloides/transplante , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/transplante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA