Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 380(2215): 20210192, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34865529

RESUMO

Arctic wetlands and surrounding ecosystems are both a significant source of methane (CH4) and a sink of carbon dioxide (CO2) during summer months. However, precise quantification of this regional CH4 source and CO2 sink remains poorly characterized. A research flight using the UK Facility for Airborne Atmospheric Measurement was conducted in July 2019 over an area (approx. 78 000 km2) of mixed peatland and forest in northern Sweden and Finland. Area-averaged fluxes of CH4 and carbon dioxide were calculated using an aircraft mass balance approach. Net CH4 fluxes normalized to wetland area ranged between 5.93 ± 1.87 mg m-2 h-1 and 4.44 ± 0.64 mg m-2 h-1 (largest to smallest) over the region with a meridional gradient across three discrete areas enclosed by the flight survey. From largest to smallest, net CO2 sinks ranged between -513 ± 74 mg m-2 h-1 and -284 ± 89 mg m-2 h-1 and result from net uptake of CO2 by vegetation and soils in the biosphere. A clear gradient of decreasing bulk and area-averaged CH4 flux was identified from north to south across the study region, correlated with decreasing peat bog land area from north to south identified from CORINE land cover classifications. While N2O mole fraction was measured, no discernible gradient was measured over the flight track, but a minimum flux threshold using this mass balance method was calculated. Bulk (total area) CH4 fluxes determined via mass balance were compared with area-weighted upscaled chamber fluxes from the same study area and were found to agree well within measurement uncertainty. The mass balance CH4 fluxes were found to be significantly higher than the CH4 fluxes reported by many land-surface process models compiled as part of the Global Carbon Project. There was high variability in both flux distribution and magnitude between the individual models. This further supports previous studies that suggest that land-surface models are currently ill-equipped to accurately capture carbon fluxes inthe region. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 2)'.


Assuntos
Metano , Áreas Alagadas , Dióxido de Carbono , Ecossistema , Estações do Ano
2.
Philos Trans A Math Phys Eng Sci ; 380(2215): 20200449, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34865534

RESUMO

The atmospheric methane (CH4) burden is rising sharply, but the causes are still not well understood. One factor of uncertainty is the importance of tropical CH4 emissions into the global mix. Isotopic signatures of major sources remain poorly constrained, despite their usefulness in constraining the global methane budget. Here, a collection of new δ13CCH4 signatures is presented for a range of tropical wetlands and rice fields determined from air samples collected during campaigns from 2016 to 2020. Long-term monitoring of δ13CCH4 in ambient air has been conducted at the Chacaltaya observatory, Bolivia and Southern Botswana. Both long-term records are dominated by biogenic CH4 sources, with isotopic signatures expected from wetland sources. From the longer-term Bolivian record, a seasonal isotopic shift is observed corresponding to wetland extent suggesting that there is input of relatively isotopically light CH4 to the atmosphere during periods of reduced wetland extent. This new data expands the geographical extent and range of measurements of tropical wetland and rice δ13CCH4 sources and hints at significant seasonal variation in tropical wetland δ13CCH4 signatures which may be important to capture in future global and regional models. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 2)'.


Assuntos
Oryza , Áreas Alagadas , Atmosfera , Metano , Estações do Ano
3.
Philos Trans A Math Phys Eng Sci ; 380(2215): 20210112, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34865533

RESUMO

We report methane isotopologue data from aircraft and ground measurements in Africa and South America. Aircraft campaigns sampled strong methane fluxes over tropical papyrus wetlands in the Nile, Congo and Zambezi basins, herbaceous wetlands in Bolivian southern Amazonia, and over fires in African woodland, cropland and savannah grassland. Measured methane δ13CCH4 isotopic signatures were in the range -55 to -49‰ for emissions from equatorial Nile wetlands and agricultural areas, but widely -60 ± 1‰ from Upper Congo and Zambezi wetlands. Very similar δ13CCH4 signatures were measured over the Amazonian wetlands of NE Bolivia (around -59‰) and the overall δ13CCH4 signature from outer tropical wetlands in the southern Upper Congo and Upper Amazon drainage plotted together was -59 ± 2‰. These results were more negative than expected. For African cattle, δ13CCH4 values were around -60 to -50‰. Isotopic ratios in methane emitted by tropical fires depended on the C3 : C4 ratio of the biomass fuel. In smoke from tropical C3 dry forest fires in Senegal, δ13CCH4 values were around -28‰. By contrast, African C4 tropical grass fire δ13CCH4 values were -16 to -12‰. Methane from urban landfills in Zambia and Zimbabwe, which have frequent waste fires, had δ13CCH4 around -37 to -36‰. These new isotopic values help improve isotopic constraints on global methane budget models because atmospheric δ13CCH4 values predicted by global atmospheric models are highly sensitive to the δ13CCH4 isotopic signatures applied to tropical wetland emissions. Field and aircraft campaigns also observed widespread regional smoke pollution over Africa, in both the wet and dry seasons, and large urban pollution plumes. The work highlights the need to understand tropical greenhouse gas emissions in order to meet the goals of the UNFCCC Paris Agreement, and to help reduce air pollution over wide regions of Africa. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 2)'.


Assuntos
Poluição do Ar , Áreas Alagadas , Agricultura , Animais , Bovinos , Metano/análise , Estações do Ano
4.
Environ Sci Technol ; 54(24): 15604-15612, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33206512

RESUMO

Commercial shipping is considered as an important source of air pollution and cloud condensation nuclei (CCN). To assess the climatic and environmental impacts of shipping, detailed characterization of ship plumes near the point of emission and understanding of ship plume evolution further downwind are essential. This airborne measurement study presents the online characterization of particulate phase ship emissions in the region of Western Europe in 2019 prior to new international sulfur emission controls becoming enacted. More than 30 ships from both the sulfur emission control area (SECA) in the English Channel and the open sea (OS) are measured and compared. Ships within the SECA emitted much less sulfate (SO4) compared with those at OS. When shifted to a lower apparent fuel sulfur content (FSC) at similar engine loads, the peak of the fresh ship emitting the particle number size distribution shifted from around 60-80 nm in diameter to below 40 nm in diameter. The emission factors (EFs) of sulfate are predicted to decrease by around 94% after the 2020 regulation on ship sulfur emission in the open ocean. The EFs of refractory black carbon (rBC) and organic compounds (Org) do not appear to be directly affected by the lower sulfur contents. The total number concentration for condensation nuclei (CN) >2.5 nm and >0.1 µm are predicated to be reduced by 69 and 56%, respectively. Measured plume evolution results indicate that the S(IV) to S(VI) conversion rate was around 23.4% per hour at the beginning of plume evolution, and the CCN and CN >2.5 nm ratio increased with plume age primarily due to condensation and coagulation. We estimate that the new sulfur emission regulation will lead to a reduction of more than 80% in CCN from fresh ship emissions. The ship-emitted EFs results presented here will also inform emission inventories, policymaking, climate, and human health studies.


Assuntos
Poluentes Atmosféricos , Navios , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Europa (Continente) , Humanos , Material Particulado/análise , Emissões de Veículos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA