RESUMO
Clearance of apoptotic cells by macrophages prevents excessive inflammation and supports immune tolerance. Here, we examined the effect of blocking apoptotic cell clearance on anti-tumor immune response. We generated an antibody that selectively inhibited efferocytosis by phagocytic receptor MerTK. Blockade of MerTK resulted in accumulation of apoptotic cells within tumors and triggered a type I interferon response. Treatment of tumor-bearing mice with anti-MerTK antibody stimulated T cell activation and synergized with anti-PD-1 or anti-PD-L1 therapy. The anti-tumor effect induced by anti-MerTK treatment was lost in Stinggt/gt mice, but not in Cgas-/- mice. Abolishing cGAMP production in Cgas-/- tumor cells, depletion of extracellular ATP, or inactivation of the ATP-gated P2X7R channel also compromised the effects of MerTK blockade. Mechanistically, extracellular ATP acted via P2X7R to enhance the transport of extracellular cGAMP into macrophages and subsequent STING activation. Thus, MerTK blockade increases tumor immunogenicity and potentiates anti-tumor immunity, which has implications for cancer immunotherapy.
Assuntos
Macrófagos/imunologia , Proteínas de Membrana/metabolismo , Neoplasias/imunologia , Nucleotídeos Cíclicos/metabolismo , Receptores Purinérgicos P2X7/metabolismo , c-Mer Tirosina Quinase/imunologia , Trifosfato de Adenosina/metabolismo , Animais , Apoptose , Antígeno B7-H1/imunologia , Células Cultivadas , Feminino , Imunidade Inata , Imunoterapia , Interferon Tipo I/metabolismo , Macrófagos/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Nucleotidiltransferases/deficiência , Nucleotidiltransferases/metabolismo , Fagocitose , Receptor de Morte Celular Programada 1/imunologia , Receptores Purinérgicos P2X7/deficiência , Transdução de Sinais/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , c-Mer Tirosina Quinase/genéticaRESUMO
Between July of 2012 and December of 2014, 39 patients were enrolled prospectively to investigate the prevalence of glucose transporter 1 (GLUT1) deficiency in a ketogenic diet clinic. None of them had GLUT1 deficiency. All patients seen in the same clinic within the same period were reviewed retrospectively. A total of 18 of these 85 patients had a genetic diagnosis, including GLUT1 deficiency, pathogenic copy number variants, congenital disorder of glycosylation, neuronal ceroid lipofuscinosis type II, mitochondrial disorders, tuberous sclerosis, lissencephaly, and SCN1A-, SCN8A-, and STXBP1-associated epileptic encephalopathies. The prevalence of genetic diagnoses was 21% and prevalence of GLUT1 deficiency was 2.4% in our retrospective cohort study.
Assuntos
Erros Inatos do Metabolismo dos Carboidratos/complicações , Erros Inatos do Metabolismo dos Carboidratos/genética , Dieta Cetogênica/métodos , Epilepsia/complicações , Proteínas de Transporte de Monossacarídeos/deficiência , Adolescente , Erros Inatos do Metabolismo dos Carboidratos/dietoterapia , Erros Inatos do Metabolismo dos Carboidratos/epidemiologia , Criança , Pré-Escolar , Estudos de Coortes , Epilepsia/dietoterapia , Epilepsia/epidemiologia , Epilepsia/genética , Feminino , Humanos , Masculino , Proteínas de Transporte de Monossacarídeos/genética , PrevalênciaRESUMO
We report treatment outcome of eleven patients with pyridoxine-dependent epilepsy caused by pathogenic variants in ALDH7A1 (PDE-ALDH7A1). We developed a clinical severity score to compare phenotype with biochemical features, genotype and delays in the initiation of pyridoxine. Clinical severity score included 1) global developmental delay/ intellectual disability; 2) age of seizure onset prior to pyridoxine; 3) current seizures on treatment. Phenotype scored 1-3 = mild; 4-6 = moderate; and 7-9 = severe. Five patients had mild, four patients had moderate, and two patients had severe phenotype. Phenotype ranged from mild to severe in eight patients (no lysine-restricted diet in the infantile period) with more than 10-fold elevated urine or plasma α-AASA levels. Phenotype ranged from mild to moderate in patients with homozygous truncating variants and from moderate to severe in patients with homozygous missense variants. There was no correlation between severity of the phenotype and the degree of α-AASA elevation in urine or genotype. All patients were on pyridoxine, nine patients were on arginine and five patients were on the lysine-restricted diet. 73% of the patients became seizure free on pyridoxine. 25% of the patients had a mild phenotype on pyridoxine monotherapy. Whereas, 100% of the patients, on the lysine-restricted diet initiated within their first 7 months of life, had a mild phenotype. Early initiation of lysine-restricted diet and/or arginine therapy likely improved neurodevelopmental outcome in young patients with PDE-ALDH7A1.
Assuntos
Epilepsia/tratamento farmacológico , Epilepsia/genética , Piridoxina/uso terapêutico , Vitaminas/uso terapêutico , Ácido 2-Aminoadípico/análogos & derivados , Ácido 2-Aminoadípico/sangue , Ácido 2-Aminoadípico/urina , Adolescente , Aldeído Desidrogenase/genética , Arginina/uso terapêutico , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Genótipo , Humanos , Lactente , Lisina , Masculino , Mutação de Sentido Incorreto , Fenótipo , Piridoxina/administração & dosagem , Estudos Retrospectivos , Convulsões/tratamento farmacológico , Convulsões/fisiopatologia , Resultado do Tratamento , Vitaminas/administração & dosagemRESUMO
Guanidinoacetate methyltransferase (GAMT) deficiency is a neurodegenerative disease. Although no symptomatic patients on treatment achieved normal neurodevelopment, three asymptomatic newborns were reported with normal neurodevelopmental outcome on neonatal treatment. GAMT deficiency is therefore a candidate for newborn screening programs, but there are no studies for the carrier frequency of this disease in the general population. To determine carrier frequency of GAMT deficiency, we studied the variants in the GAMT gene reported in the Exome Variant Server database and performed functional characterization of missense variants. We used previously cloned GAMT transcript variant 1 (7 missense variants) and cloned a novel GAMT transcript variant 2 (5 missense variants). The latter was used in Exome Variant Server database according to recommendations of the Human Genome Variation Society. There were 4 missense variants (1 previously reported and 3 novel) with low GAMT enzyme activity indicating pathogenicity. Additionally, there was one novel frameshift and one novel nonsense variant likely pathogenic. There was no measurable GAMT enzyme activity in the wild type of GAMT transcript variant 2. We concluded that GAMT transcript variant 2 is not involved in GAMT protein synthesis. For this reason, Human Genome Variation Society should use mutation nomenclature according to the coding region of the GAMT transcript variant 1. The carrier frequency of GAMT deficiency was 0.123 % in the general population. As early diagnosis results in normal neurodevelopmental outcome, GAMT deficiency should be included in newborn screening programs to diagnose individuals at the asymptomatic stage of the disease to prevent permanent neurodevelopmental disability.
Assuntos
Triagem de Portadores Genéticos , Guanidinoacetato N-Metiltransferase/deficiência , Guanidinoacetato N-Metiltransferase/genética , Transtornos do Desenvolvimento da Linguagem/genética , Transtornos dos Movimentos/congênito , Mutação de Sentido Incorreto , Sequência de Aminoácidos , Guanidinoacetato N-Metiltransferase/química , Células HeLa , Humanos , Recém-Nascido , Dados de Sequência Molecular , Transtornos dos Movimentos/genética , Triagem Neonatal , Homologia de Sequência de AminoácidosRESUMO
Delivery of antigen in particulate form using either synthetic or natural particles induces stronger immunity than soluble forms of the antigen. Among naturally occurring particles, virus-like particles (VLPs) have been genetically engineered to express tumor-associated antigens (TAAs) and have shown to induce strong TAA-specific immune responses due to their nano-particulate size and ability to bind and activate antigen-presenting cells. In this report, we demonstrate that influenza VLPs can be modified by a protein transfer technology to express TAAs for induction of effective antitumor immune responses. We converted the breast cancer HER-2 antigen to a glycosylphosphatidylinositol (GPI)-anchored form and incorporated GPI-HER-2 onto VLPs by a rapid protein transfer process. Expression levels on VLPs depended on the GPI-HER-2 concentration added during protein transfer. Vaccination of mice with protein transferred GPI-HER-2-VLPs induced a strong Th1 and Th2-type anti-HER-2 antibody response and protected mice against a HER-2-expressing tumor challenge. The Soluble form of GPI-HER-2 induced only a weak Th2 response under similar conditions. These results suggest that influenza VLPs can be enriched with TAAs by protein transfer to develop effective VLP-based subunit vaccines against cancer without chemical or genetic modifications and thus preserve the immune stimulating properties of VLPs for easier production of antigen-specific therapeutic cancer vaccines.
Assuntos
Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Portadores de Fármacos , Neoplasias/prevenção & controle , Orthomyxoviridae/metabolismo , Receptor ErbB-2/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Anticorpos Antineoplásicos/sangue , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/genética , Modelos Animais de Doenças , Humanos , Imunidade , Camundongos , Neoplasias/imunologia , Orthomyxoviridae/genética , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genéticaRESUMO
OBJECTIVE: Epilepsy is a common neurologic disorder of childhood. To determine the genetic diagnostic yield in epileptic encephalopathy, we performed a retrospective cohort study in a single epilepsy genetics clinic. METHODS: We included all patients with intractable epilepsy, global developmental delay, and cognitive dysfunction seen between January 2012 and June 2014 in the Epilepsy Genetics Clinic. Electronic patient charts were reviewed for clinical features, neuroimaging, biochemical investigations, and molecular genetic investigations including targeted next-generation sequencing of epileptic encephalopathy genes. RESULTS: Genetic causes were identified in 28% of the 110 patients: 7% had inherited metabolic disorders including pyridoxine dependent epilepsy caused by ALDH7A1 mutation, Menkes disease, pyridox(am)ine-5-phosphate oxidase deficiency, cobalamin G deficiency, methylenetetrahydrofolate reductase deficiency, glucose transporter 1 deficiency, glycine encephalopathy, and pyruvate dehydrogenase complex deficiency; 21% had other genetic causes including genetic syndromes, pathogenic copy number variants on array comparative genomic hybridization, and epileptic encephalopathy related to mutations in the SCN1A, SCN2A, SCN8A, KCNQ2, STXBP1, PCDH19, and SLC9A6 genes. Forty-five percent of patients obtained a genetic diagnosis by targeted next-generation sequencing epileptic encephalopathy panels. It is notable that 4.5% of patients had a treatable inherited metabolic disease. SIGNIFICANCE: To the best of our knowledge, this is the first study to combine inherited metabolic disorders and other genetic causes of epileptic encephalopathy. Targeted next-generation sequencing panels increased the genetic diagnostic yield from <10% to >25% in patients with epileptic encephalopathy.
Assuntos
Predisposição Genética para Doença , Mutação/genética , Espasmos Infantis/diagnóstico , Espasmos Infantis/genética , Adolescente , Caderinas , Criança , Pré-Escolar , Transtornos Cognitivos/complicações , Transtornos Cognitivos/genética , Estudos de Coortes , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/genética , Feminino , Humanos , Lactente , Canal de Potássio KCNQ2 , Masculino , Proteínas Munc18 , Canal de Sódio Disparado por Voltagem NAV1.2 , Protocaderinas , Trocadores de Sódio-Hidrogênio , Espasmos Infantis/complicaçõesRESUMO
Recombinant virus-like nanoparticles (VLPs) are a promising nanoparticle platform to develop safe vaccines for many viruses. Herein, we describe a novel and rapid protein transfer process to enhance the potency of enveloped VLPs by decorating influenza VLPs with exogenously added glycosylphosphatidylinositol-anchored immunostimulatory molecules (GPI-ISMs). With protein transfer, the level of GPI-ISM incorporation onto VLPs is controllable by varying incubation time and concentration of GPI-ISMs added. ISM incorporation was dependent upon the presence of a GPI-anchor and incorporated proteins were stable and functional for at least 4weeks when stored at 4°C. Vaccinating mice with GPI-granulocyte macrophage colony-stimulating factor (GM-CSF)-incorporated-VLPs induced stronger antibody responses and better protection against a heterologous influenza virus challenge than unmodified VLPs. Thus, VLPs can be enriched with ISMs by protein transfer to increase the potency and breadth of the immune response, which has implications in developing effective nanoparticle-based vaccines against a broad spectrum of enveloped viruses. FROM THE CLINICAL EDITOR: The inherent problem with current influenza vaccines is that they do not generate effective cross-protection against heterologous viral strains. In this article, the authors described the development of virus-like nanoparticles (VLPs) as influenza vaccines with enhanced efficacy for cross-protection, due to an easy protein transfer modification process.
Assuntos
Adjuvantes Imunológicos/farmacologia , Glicosilfosfatidilinositóis/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Orthomyxoviridae/imunologia , Vírion/imunologia , Adjuvantes Imunológicos/química , Animais , Anticorpos Antivirais/imunologia , Células CHO , Cricetulus , Feminino , Glicosilfosfatidilinositóis/química , Fator Estimulador de Colônias de Granulócitos e Macrófagos/química , Humanos , Imunidade Celular , Imunidade Humoral , Vacinas contra Influenza/química , Camundongos Endogâmicos BALB C , Nanopartículas/química , Orthomyxoviridae/química , Infecções por Orthomyxoviridae/imunologia , Vacinação , Vírion/químicaRESUMO
OBJECTIVES: Glycogen storage disease (GSD) types VI and IX are caused by phosphorylase system deficiencies. To evaluate the natural history and long-term treatment outcome of the patients with GSD-VI and -IX, we performed an observational retrospective case study of 21 patients with confirmed diagnosis of GSD-VI or -IX. METHODS: All patients with GSD-VI or -IX, diagnosed at The Hospital for Sick Children, were included. Electronic and paper charts were reviewed for clinical features, biochemical investigations, molecular genetic testing, diagnostic imaging, long-term outcome and treatment by two independent research team members. All information was entered into an Excel database. RESULTS: We report on the natural history and treatment outcomes of the 21 patients with GSD-VI and -IX and 16 novel pathogenic mutations in the PHKA2, PHKB, PHKG2 and PYGL genes. We report for the first time likely liver adenoma on liver ultrasound and liver fibrosis on liver biopsy specimens in patients with GSD-VI and mild cardiomyopathy on echocardiography in patients with GSD-VI and -IXb. CONCLUSION: We recommend close monitoring in all patients with GSD-VI and -IX for the long-term liver and cardiac complications. There is a need for future studies if uncooked cornstarch and high protein diet would be able to prevent long-term complications of GSD-VI and -IX.
Assuntos
Doença de Depósito de Glicogênio Tipo VI/genética , Adolescente , Canadá , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Doença de Depósito de Glicogênio/complicações , Doença de Depósito de Glicogênio/genética , Doença de Depósito de Glicogênio/terapia , Doença de Depósito de Glicogênio Tipo VI/complicações , Doença de Depósito de Glicogênio Tipo VI/terapia , Humanos , Cirrose Hepática/genética , Masculino , Estudos Retrospectivos , Resultado do TratamentoRESUMO
Evaluations of genetic diversity in domestic livestock populations are necessary to implement region-specific conservation measures. We determined the genetic diversity and evolutionary relationships among eight geographically and phenotypically diverse cattle breeds indigenous to west-central India by genotyping these animals for 22 microsatellite loci. A total of 326 alleles were detected, and the expected heterozygosity ranged from 0.614 (Kenkatha) to 0.701 (Dangi). The mean number of alleles among the cattle breeds ranged from 7.182 (Khillar) to 9.409 (Gaolao). There were abundant genetic variations displayed within breeds, and the genetic differentiation was also high between the Indian cattle breeds, which displayed 15.9% of the total genetic differentiation among the different breeds. The genetic differentiation (pairwise FST ) among the eight Indian breeds varied from 0.0126 for the Kankrej-Malvi pair to 0.2667 for Khillar-Kenkatha pair. The phylogeny, principal components analysis, and structure analysis further supported close grouping of Kankrej, Malvi, Nimari and Gir; Gaolao and Kenkatha, whereas Dangi and Khillar remained at distance from other breeds.
Assuntos
Bovinos/genética , Variação Genética , Genética Populacional , Repetições de Microssatélites/genética , Alelos , Animais , Teorema de Bayes , Cruzamento , Bovinos/classificação , Análise por Conglomerados , Marcadores Genéticos , Genótipo , Geografia , Índia , Fenótipo , Filogenia , Análise de Componente Principal , Especificidade da EspécieRESUMO
BACKGROUND: Human leukocyte antigen (HLA) is comprised of a highly polymorphic set of genes which determines the histocompatibility of organ transplantation. The present study was undertaken to identify HLA class I and class II allele, genotype and haplotype frequencies in renal transplant recipients and donors from West Central India. MATERIALS AND METHODS: HLA typing was carried out using Polymerase Chain Reaction-Sequence Specific Primer in 552 live related and unrelated renal transplant recipients and donors. RESULTS: The most frequent HLA class I and class II alleles and their frequencies in recipients were HLA-AFNx0101 (0.1685) and AFNx0102 (0.1649), HLA-BFNx0135 (0.1322), and HLA-DR beta 1 (DRB 1)FNx0115 (0.2192), whereas in donors, these were HLA-AFNx0102 (0.1848) and AFNx0101 (0.1667), HLA-BFNx0135 (0.1359), and HLA-DRB1FNx0115 (0.2409). The two-locus haplotype statistical analysis revealed HLA-AFNx0102-B61 as the most common haplotype with the frequency of 0.0487 and 0.0510 in recipients and donors, respectively. Further, among the three locus haplotypes HLA-AFNx0133-BFNx0144-DRB1FNx0107 and HLA-AFNx0102-BFNx0161-DRB1FNx0115 were the most common haplotypes with frequencies 0.0362 and 0.0326, respectively in recipients and 0.0236 and 0.0323, respectively in donors. Genotype frequency revealed a high prevalence of genotype HLA-AFNx0102/AFNx0124 in recipients (0.058) compared to donors (0.0109) whereas low prevalence of HLA-AFNx0101/AFNx0102 in recipients (0.0435) than in donors (0.0797). The phylogenetic and principal component analysis of HLA allele and haplotype frequency distribution revealed genetic similarities of various ethnic groups. Further, case control analysis provides preliminary evidence of association of HLA-A genotype (P < 0.05) with renal failure. CONCLUSION: This study will be helpful in suitable donor search besides providing valuable information for population genetics and HLA disease association analysis.
RESUMO
Cancer cells have developed numerous ways to escape immune surveillance and gain unlimited proliferative capacity. Currently, several chemotherapeutic agents and radiotherapy, either alone or in combination, are being used to treat malignancies. However, both of these therapies are associated with several limitations and detrimental side effects. Therefore, recent scientific investigations suggest that immunotherapy is among the most promising new approaches in modern cancer therapy. The focus of cancer immunotherapy is to boost both acquired and innate immunity against malignancies by specifically targeting tumor cells, and leaving healthy cells and tissues unharmed. Cellular, cytokine, gene, and monoclonal antibody therapies have progressively become promising immunotherapeutic approaches that are being tested for several cancers in preclinical models as well as in the clinic. In this review, we discuss recent advances in these immunotherapeutic approaches, focusing on new strategies that allow the expression of specific immunostimulatory molecules on the surface of tumor cells to induce robust antitumor immunity.
Assuntos
Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Imunoterapia/métodos , Proteínas de Neoplasias/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Animais , HumanosRESUMO
Triple-negative breast cancer (TNBC) afflicts women at a younger age than other breast cancers and is associated with a worse clinical outcome. This poor clinical outcome is attributed to a lack of defined targets and patient-to-patient heterogeneity in target antigens and immune responses. To address such heterogeneity, we tested the efficacy of a personalized vaccination approach for the treatment of TNBC using the 4T1 murine TNBC model. We isolated tumor membrane vesicles (TMVs) from homogenized 4T1 tumor tissue and incorporated glycosyl phosphatidylinositol (GPI)-anchored forms of the immunostimulatory B7-1 (CD80) and IL-12 molecules onto these TMVs to make a TMV vaccine. Tumor-bearing mice were then administered with the TMV vaccine either alone or in combination with immune checkpoint inhibitors. We show that TMV-based vaccine immunotherapy in combination with anti-CTLA-4 mAb treatment upregulated immunomodulatory cytokines in the plasma, significantly improved survival, and reduced pulmonary metastasis in mice compared to either therapy alone. The depletion of CD8+ T cells, but not CD4+ T cells, resulted in the loss of efficacy. This suggests that the vaccine acts via tumor-specific CD8+ T cell immunity. These results suggest TMV vaccine immunotherapy as a potential enhancer of immune checkpoint inhibitor therapies for metastatic triple-negative breast cancer.
Assuntos
Vacinas Anticâncer , Neoplasias de Mama Triplo Negativas , Animais , Linfócitos T CD8-Positivos/imunologia , Antígeno CTLA-4 , Linhagem Celular Tumoral , Humanos , Imunoterapia , Interleucina-12 , Camundongos , Neoplasias de Mama Triplo Negativas/terapiaRESUMO
BACKGROUND: TNF receptor family agonists and checkpoint blockade combination therapies lead to minimal tumor clearance of poorly immunogenic tumors. Therefore, a need to enhance the efficacy of this combination therapy arises. Antigen-presenting cells (APCs) present antigen to T cells and steer the immune response through chemokine and cytokine secretion. DRibbles (DR) are tumor-derived autophagosomes containing tumor antigens and innate inflammatory adjuvants. METHODS: Using preclinical murine lung and pancreatic cancer models, we assessed the triple combination therapy of GITR agonist and PD-1 blocking antibodies with peritumoral injections of DRibbles-pulsed-bone marrow cells (BMCs), which consisted mainly of APCs, or CD103+ cross-presenting dendritic cells (DCs). Immune responses were assessed by flow cytometry. FTY720 was used to prevent T-cell egress from lymph nodes to assess lymph node involvement, and MHC-mismatched-BMCs were used to assess the necessity of antigen presentation by the peritumorally-injected DR-APCs. RESULTS: Tritherapy increased survival and cures in tumor-bearing mice compared to combined antibody therapy or peritumoral DR-BMCs alone. Peritumorally-injected BMCs remained within the tumor for at least 14 days and tritherapy efficacy was dependent on both CD4+ and CD8+ T cells. Although the overall percent of tumor-infiltrating T cells remained similar, tritherapy increased the ratio of effector CD4+ T cells-to-regulatory T cells, CD4+ T-cell cytokine production and proliferation, and CD8+ T-cell cytolytic activity in the tumor. Despite tritherapy-induced T-cell activation and cytolytic activity in lymph nodes, this T-cell activation was not required for tumor regression and enhanced survival. Replacement of DR-BMCs with DR-pulsed-DCs in the tritherapy led to similar antitumor effects, whereas replacement with DRibbles was less effective but delayed tumor growth. Interestingly, peritumoral administration of DR-pulsed MHC-mismatched-APCs in the tritherapy led to similar antitumor effects as MHC-matched-APCs, indicating that the observed enhanced antitumor effect was mediated independently of antigen presentation by the administered APCs. CONCLUSIONS: Overall, these results demonstrate that peritumoral DR-pulsed-BMC/DC administration synergizes with GITR agonist and PD-1 blockade to locally modulate and sustain tumor effector T-cell responses independently of T cell priming and perhaps through innate inflammatory modulations mediated by the DRibbles adjuvant. We offer a unique approach to modify the tumor microenvironment to benefit T-cell-targeted immunotherapies.
Assuntos
Anticorpos/uso terapêutico , Células Apresentadoras de Antígenos/imunologia , Células da Medula Óssea/imunologia , Proteína Relacionada a TNFR Induzida por Glucocorticoide/antagonistas & inibidores , Neoplasias Pulmonares/terapia , Neoplasias Pancreáticas/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Apresentação de Antígeno , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Citocinas/imunologia , Proteína Relacionada a TNFR Induzida por Glucocorticoide/agonistas , Neoplasias Pulmonares/imunologia , Linfócitos do Interstício Tumoral/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/imunologia , Fagossomos/imunologia , Linfócitos T/imunologiaRESUMO
Nucleic acid sensing pathways have likely evolved as part of a broad pathogen sensing strategy intended to discriminate infectious agents and initiate appropriate innate and adaptive controls. However, in the absence of infectious agents, nucleic acid sensing pathways have been shown to play positive and negative roles in regulating tumorigenesis, tumor progression and metastatic spread. Understanding the normal biology behind these pathways and how they are regulated in malignant cells and in the tumor immune environment can help us devise strategies to exploit nucleic acid sensing to manipulate anti-cancer immunity.
Assuntos
Imunidade , Neoplasias/imunologia , Ácidos Nucleicos/metabolismo , Animais , Carcinogênese/patologia , Dano ao DNA , Humanos , Neoplasias/terapiaRESUMO
BACKGROUND: X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal disorder associated with leukodystrophy, myeloneuropathy and adrenocortical insufficiency. We performed a retrospective cohort study to evaluate long-term outcome of patients with X-ALD. METHOD: All patients with X-ALD diagnosed between 1989 and 2012 were included. Electronic patient charts were reviewed for clinical features, biochemical investigations, molecular genetic testing, neuroimaging, long-term outcome and treatment. RESULTS: Forty-eight patients from 18 unrelated families were included (15 females; 33 males). Seventeen patients were symptomatic at the time of the biochemical diagnosis including 14 with neurocognitive dysfunction and 3 with Addison disease only. Thirty-one asymptomatic individuals were identified by positive family history of X-ALD. During follow-up, eight individuals developed childhood cerebral X-ALD (CCALD), one individual developed adrenomyeloneuropathy (AMN), six individuals developed Addison disease only, and five individuals remained asymptomatic. Direct sequencing of ABCD1 confirmed the genetic diagnosis in 29 individuals. Seven patients with CCALD underwent hematopoietic stem cell transplantation (HSCT). Nine patients lost the follow-up. There was no correlation between clinical severity score, Loes score and elevated degree of elevated very long chain fatty acid (VLCFA) levels in CCALD. CONCLUSION: Our study reports forty-eight new patients with X-ALD and their long-term outcome. Only 35% of the patients presented with neurological features or Addison disease. The remaining individuals were identified due to positive family history. Close monitoring of asymptomatic males resulted in early HSCT to prevent progressive lethal neurodegenerative disease. Identification of patients with X-ALD is important to improve neurodevelopmental outcome of asymptomatic males.
Assuntos
Adrenoleucodistrofia/diagnóstico , Adrenoleucodistrofia/complicações , Adrenoleucodistrofia/fisiopatologia , Estudos de Coortes , Feminino , Humanos , Masculino , Estudos RetrospectivosRESUMO
Epilepsy is one of the most common neurological disorders in childhood. Epilepsy associated with global developmental delay and cognitive dysfunction is defined as epileptic encephalopathy. Certain inherited metabolic disorders presenting with epileptic encephalopathy can be treated with disease specific diet, vitamin, amino acid or cofactor supplementations. In those disorders, disease specific therapy is successful to achieve good seizure control and improve long-term neurodevelopmental outcome. For this reason, intractable epilepsy with global developmental delay or history of developmental regression warrants detailed metabolic investigations for the possibility of an underlying treatable inherited metabolic disorder, which should be undertaken as first line investigations. An underlying genetic etiology in epileptic encephalopathy has been supported by recent studies such as array comparative genomic hybridization, targeted next generation sequencing panels, whole exome and whole genome sequencing. These studies report a diagnostic yield up to 70%, depending on the applied genetic testing as well as number of patients enrolled. In patients with epileptic encephalopathy, a stepwise approach for diagnostic work-up will help to diagnose treatable inherited metabolic disorders quickly. Application of detailed genetic investigations such as targeted next generation sequencing as second line and whole exome sequencing as third line testing will diagnose underlying genetic disease which will help for genetic counseling as well as guide for prenatal diagnosis. Knowledge of underlying genetic cause will provide novel insights into the pathogenesis of epileptic encephalopathy and pave the ground towards the development of targeted neuroprotective treatment strategies to improve the health outcome of children with epileptic encephalopathy.
Assuntos
Epilepsia/genética , Predisposição Genética para Doença , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização Genômica Comparativa , Epilepsia/diagnóstico , HumanosRESUMO
Isoforms of the Fcγ receptor III (FcγRIII or CD16) are cell surface receptors for the Fc portion of IgG and important regulators of humoral immune responses. Different ligand binding kinetics of FcγRIII isoforms are obtained in three dimensions by surface plasmon resonance and in two dimensions by a micropipette adhesion frequency assay. We show that the anchor structure of CD16 isoforms isolated from the cell membrane affects their binding affinities in a ligand-specific manner. Changing the receptor anchor structure from full to partial to none decreases the ligand binding affinity for human IgG1 (hIgG1) but increases it for murine IgG2a (mIgG2a). Removing N-glycosylation from the CD16 protein core by tunicamycin also increases the ligand binding affinity. Molecular dynamics simulations indicate that deglycosylation at Asn-163 of CD16 removes the steric hindrance for the CD16-hIgG1 Fc binding and thus increases the binding affinity. These results highlight an unexpected sensitivity of ligand binding to the receptor anchor structure and glycosylation and suggest their respective roles in controlling allosterically the conformation of the ligand binding pocket of CD16.
Assuntos
Receptores de IgG/metabolismo , Animais , Membrana Celular/metabolismo , Proteínas Ligadas por GPI/metabolismo , Glicosilação , Humanos , Imunoglobulina G/metabolismo , Cinética , Ligantes , Modelos Moleculares , Ligação Proteica , Isoformas de Proteínas , Receptores de IgG/fisiologia , Relação Estrutura-Atividade , Ressonância de Plasmônio de SuperfícieRESUMO
Antigen delivered within particulate materials leads to enhanced antigen-specific immunity compared to soluble administration of antigen. However, current delivery approaches for antigen encapsulated in synthetic particulate materials are limited by the complexity of particle production that affects stability and immunogenicity of the antigen. Herein, we describe a protein delivery system that utilizes plasma membrane vesicles (PMVs) derived from biological materials such as cultured cells or isolated tissues and a simple protein transfer technology. We show that these particulate PMVs can be easily modified within 4 h by a protein transfer process to stably incorporate a glycosylphosphatidylinositol (GPI)-anchored form of the breast cancer antigen HER-2 onto the PMV surface. Immunization of mice with GPI-HER-2-modified-PMVs induced strong HER-2-specific antibody responses and protection from tumor challenge in two different breast cancer models. Further incorporation of the immunostimulatory molecules IL-12 and B7-1 onto the PMVs by protein transfer enhanced tumor protection and induced beneficial Th1 and Th2-type HER-2-specific immune responses. Since protein antigens can be easily converted to GPI-anchored forms, these results demonstrate that isolated plasma membrane vesicles can be modified with desired antigens along with immunostimulatory molecules by protein transfer and used as a vaccine delivery vehicle to elicit potent antigen-specific immunity.