Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Transp Res D Transp Environ ; 41: 348-366, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32288595

RESUMO

Electrification is widely considered as a viable strategy for reducing the oil dependency and environmental impacts of road transportation. In pursuit of this strategy, most attention has been paid to electric cars. However, substantial, yet untapped, potentials could be realized in urban areas through the large-scale introduction of electric two-wheelers. Here, we review the environmental, economic, and social performance of electric two-wheelers, demonstrating that these are generally more energy efficient and less polluting than conventionally-powered motor vehicles. Electric two-wheelers tend to decrease exposure to pollution as their environmental impacts largely result from vehicle production and electricity generation outside of urban areas. Our analysis suggests that the price of e-bikes has been decreasing at a learning rate of 8%. Despite price differentials of 5000 ± 1800 EUR2012 kW h-1 in Europe, e-bikes are penetrating the market because they appear to offer an apparent additional use value relative to bicycles. Mid-size and large electric two-wheelers do not offer such an additional use value compared to their conventional counterparts and constitute niche products at price differentials of 700 ± 360 EUR2012 kW-1 and 160 ± 90 EUR2012 kW-1, respectively. The large-scale adoption of electric two-wheelers can reduce traffic noise and road congestion but may necessitate adaptations of urban infrastructure and safety regulations. A case-specific assessment as part of an integrated urban mobility planning that accounts, e.g., for the local electricity mix, infrastructure characteristics, and mode-shift behavior, should be conducted before drawing conclusions about the sustainability impacts of electric two-wheelers.

3.
Bioresour Technol ; 135: 490-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23069604

RESUMO

The aim of this study is to present and apply a quick screening method and to identify the most promising bioethanol derivatives using an early-stage sustainability assessment method that compares a bioethanol-based conversion route to its respective petrochemical counterpart. The method combines, by means of a multi-criteria approach, quantitative and qualitative proxy indicators describing economic, environmental, health and safety and operational aspects. Of twelve derivatives considered, five were categorized as favorable (diethyl ether, 1,3-butadiene, ethyl acetate, propylene and ethylene), two as promising (acetaldehyde and ethylene oxide) and five as unfavorable derivatives (acetic acid, n-butanol, isobutylene, hydrogen and acetone) for an integrated biorefinery concept.


Assuntos
Biocombustíveis , Biotecnologia/métodos , Conservação dos Recursos Naturais , Etanol/química , Biocatálise , Biocombustíveis/economia , Biotecnologia/economia
4.
ChemSusChem ; 6(9): 1724-36, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24078179

RESUMO

Our increasing demand for materials and energy has put critical roadblocks on our path towards a sustainable society. To remove these roadblocks, it is important to engage in smart research and development (R&D). We present an early-stage sustainability assessment framework that is used to analyze eight new bio-based process alternatives developed within the CatchBio research consortium in the Netherlands. This assessment relies on a multi-criteria approach, integrating the performance of chemical conversions based on five indicators into an index value. These indicators encompass economics, environmental impact, hazards and risks thereby incorporating elements of green chemistry principles, and techno-economic and life cycle assessments. The analyzed bio-based options target the production of fuels and chemicals through chemical catalysis. For each bio-based process, two R&D stages (current laboratory and expected future) are assessed against a comparable conventional process. The multi-criteria assessment in combination with the uncertainty and scenario analysis shows that the chemical production processes using biomass as feedstock can provide potential sustainability benefits over conventional alternatives. However, further development is necessary to realize the potential benefits from biomass gasification and pyrolysis processes for fuel production. This early stage assessment is intended as an input for R&D decision making to support optimal allocation and utilization of resources to further develop promising bio-based processes.


Assuntos
Conservação dos Recursos Naturais/métodos , Química Verde/métodos , Clima , Tomada de Decisões , Pesquisa
5.
Sci Total Environ ; 439: 307-20, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23089556

RESUMO

Pulp and paper industry is facing challenges such as resource scarcity and greenhouse gas (GHG) emissions. The objective of this research is to investigate whether the use of new coatings (micro or nano TiO(2)) and different pulp types could bring savings in wood, energy, GHG emissions and other environmental impacts in comparison with conventional printing and writing paper. We studied three types of pulp, namely i) unbleached virgin kraft pulp, ii) recovered fiber, and iii) high yield virgin chemithermo-mechanical pulp (CTMP). A life cycle assessment (LCA) was conducted from cradle to grave. Applying attributional modeling, we found that wood savings amount to 60% for the nanoparticle coated recovered fiber paper and 35% for the micro TiO(2) coated CTMP paper. According to the ReCiPe single score impact assessment method, the new product configurations allow the reduction of the environmental impacts by 10-35% compared to conventional kraft paper. Applying consequential modeling, we found larger energy and GHG emission savings compared to attributional modeling because the saved wood is used for producing energy, thereby replacing fossil fuels. The nanoparticle coated recovered fiber paper offered savings of non-renewable energy use (NREU) by 100% (13GJ/ton paper) and GHG emission reduction by 75% (0.6 tonCO(2)eq./ton paper). Micro TiO(2) coated CTMP paper offered NREU savings by 25% (3GJ/ton paper) and savings of GHG emissions by 10% (0.1 tonCO(2)eq./ton paper). The taking into account of all environmental impacts with the ReCiPe single score method leads to comparable results as that of attributional modeling. We conclude that the nanoparticle coated recovered fiber paper offered the highest savings and lowest environmental impacts. However, human toxicity and ecotoxicity impacts of the nanoparticles were not included in this analysis and need further research. If this leads to the conclusion that the toxicity impacts of the nanoparticles are serious, then the CTMP paper with micro TiO(2) coating is the preferred option.


Assuntos
Conservação dos Recursos Naturais/métodos , Poluição Ambiental/prevenção & controle , Invenções , Papel , Modelos Teóricos , Nanoestruturas/química , Papel/normas , Impressão , Fatores de Tempo , Titânio/química , Árvores , Madeira
6.
Sci Total Environ ; 417-418: 76-86, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22265599

RESUMO

If nanotechnology proves to be successful for bulk applications, large quantities of nanocomposites are likely to end up in municipal solid waste incineration (MSWI) plants. Various studies indicate that nanoobjects might be harmful to human health and the environment. At this moment there is no evidence that all nanoobjects are safely removed from the off-gas when incinerating nanocomposites in MSWI plants. This paper presents a preliminary assessment of the fate of nanoobjects during waste incineration and the ability of MSWI plants to remove them. It appears that nanoobject emission levels will increase if bulk quantities of nanocomposites end up in municipal solid waste. Many primary and secondary nanoobjects arise from the incineration of nanocomposites and removal seems insufficient for objects that are smaller than 100nm. For the nanoobjects studied in this paper, risks occur for aluminum oxide, calcium carbonate, magnesium hydroxide, POSS, silica, titanium oxide, zinc oxide, zirconia, mica, montmorillonite, talc, cobalt, gold, silver, carbon black and fullerenes. Since this conclusion is based on a desktop study without accompanying experiments, further research is required to reveal which nanoobjects will actually be emitted to the environment and to determine their toxicity to human health.


Assuntos
Poluentes Atmosféricos/análise , Incineração/normas , Nanocompostos/análise , Nanocompostos/química , Poluentes Atmosféricos/intoxicação , Humanos , Nanocompostos/intoxicação , Projetos Piloto , Estudos Prospectivos , Medição de Risco/métodos
7.
Environ Sci Technol ; 42(7): 2261-7, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18504951

RESUMO

Three scenario projections for future market potentials of biobased bulk chemicals produced by means of white biotechnology are developed for Europe (EU-25) until the year 2050, and potential nonrenewable energy savings, greenhouse gas emission reduction, and land use consequences are analyzed. These scenarios assume benign, moderate, and disadvantageous conditions for biobased chemicals. The scenario analysis yields a broad range of values for the possible market development of white biotechnology chemicals, that is, resulting in a share of white biotechnology chemicals relative to all organic chemicals of about 7 (or 5 million tonnes), 17.5 (or 26 million tonnes), or 38% (or 113 million tonnes) in 2050. We conclude that under favorable conditions, white biotechnology enables substantial savings of nonrenewable energy use (NREU) and greenhouse gas (GHG) emissions compared to the energy use of the future production of all organic chemicals from fossil resources. Savings of NREU reach up to 17% for starch crops and up to 31% for lignocellulosic feedstock by 2050, and saving percentages for GHG emissions are in a similar range. Parallel to these environmental benefits, economic advantages of up to 75 billion Euro production cost savings arise.


Assuntos
Biotecnologia , Indústria Química , Conservação de Recursos Energéticos , Europa (Continente)
8.
Risk Anal ; 27(5): 1311-21, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18076498

RESUMO

This article describes the development and application of a generic approach to the comparative assessment of risks related to the production of organic chemicals by petrochemical processes versus white biotechnology. White biotechnology, also referred to as industrial biotechnology, typically uses bio-based feedstocks instead of the fossil raw materials used in the petrochemical sector. The purpose of this study was to investigate whether the production of chemicals by means of white biotechnology has lower conventional risks than their production by petrochemical processes. Conventional risks are the risks of well-established processes, and not those related to genetically modified microorganisms and plants. Our approach combines classical risk assessment methods (largely based on toxicology), as developed by the life cycle assessment (LCA) community, with statistics on technological disasters, accidents, and work-related illnesses. Moreover, it covers the total process chain for both petrochemical and bio-based products from cradle to grave. The approach was applied to five products: the plastics polytrimethylene terephthalate (PTT), polyhydroxyalkanoates (PHA), polyethylene terephthalate (PET), polyethylene (PE), and ethanol. Our results show that the conventional risks related to the white biotechnology products studied are lower than those of the petrochemical products. However, considering the uncertainties with respect to the ranges of input data, the (incomplete) coverage of emissions by the environmental priority strategies (EPS) 2000 method, and the uncertainties of the assumptions made in this study (i.e., large to very large), the differences in results between bio-based and petrochemical products fall into the uncertainty range. Because of this, future research is necessary to decrease the uncertainties before we can conclude that the conventional risks of biotechnologically produced chemicals are lower than those of fossil-fuel-derived chemicals.


Assuntos
Compostos Orgânicos/efeitos adversos , Medição de Risco , Biotecnologia , Indústria Química , Exposição Ambiental , Humanos , Países Baixos , Compostos Orgânicos/isolamento & purificação , Petróleo , Saúde Pública
9.
Biomacromolecules ; 8(7): 2210-8, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17583946

RESUMO

A cradle-to-grave environmental life cycle assessment (LCA) of a few poly(3-hydroxybutyrate) (PHB) based composites has been performed and was compared to commodity petrochemical polymers. The end products studied are a cathode ray tube (CRT) monitor housing (conventionally produced from high-impact polystyrene, HIPS) and the internal panels of an average car (conventionally produced from glass-fibers-filled polypropylene, PP-GF). The environmental impact is evaluated on the basis of nonrenewable energy use (NREU) and global warming potential over a 100 years time horizon (GWP100). Sugar cane bagasse (SCB) and nanoscaled organophilic montmorillonite (OMMT) are used as PHB fillers. The results obtained show that, despite the unsatisfying mechanical properties of PHB composites, depending on the type of filler and on the product, it is possible to reach lower environmental impacts than by use of conventional petrochemical polymers. These savings are mainly related to the PHB production process, while there are no improvements related to composites preparation. SCB-based composites seem to be environmentally superior to clay-based ones.


Assuntos
Ácido 3-Hidroxibutírico/química , Polímeros/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA