Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 78(3): 799-816, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32920696

RESUMO

Plasmodesmata are intercellular pores connecting together most plant cells. These structures consist of a central constricted form of the endoplasmic reticulum, encircled by some cytoplasmic space, in turn delimited by the plasma membrane, itself ultimately surrounded by the cell wall. The presence and structure of plasmodesmata create multiple routes for intercellular trafficking of a large spectrum of molecules (encompassing RNAs, proteins, hormones and metabolites) and also enable local signalling events. Movement across plasmodesmata is finely controlled in order to balance processes requiring communication with those necessitating symplastic isolation. Here, we describe the identities and roles of the molecular components (specific sets of lipids, proteins and wall polysaccharides) that shape and define plasmodesmata structural and functional domains. We highlight the extensive and dynamic interactions that exist between the plasma/endoplasmic reticulum membranes, cytoplasm and cell wall domains, binding them together to effectively define plasmodesmata shapes and purposes.


Assuntos
Transporte Biológico/fisiologia , Plantas/metabolismo , Plasmodesmos/metabolismo , Comunicação Celular , Parede Celular/química , Parede Celular/metabolismo , Estruturas Citoplasmáticas/química , Retículo Endoplasmático/metabolismo , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plasmodesmos/química , Polissacarídeos/química , Polissacarídeos/metabolismo
2.
Plant Physiol ; 184(1): 53-64, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32719057

RESUMO

Plasmodesmata are small channels that connect plant cells. While recent technological advances have facilitated analysis of the ultrastructure of these channels, there are limitations to efficiently addressing their presence over an entire cellular interface. Here, we highlight the value of serial block electron microscopy for this purpose. We developed a computational pipeline to study plasmodesmata distributions and detect the presence/absence of plasmodesmata clusters, or pit fields, at the phloem unloading interfaces of Arabidopsis (Arabidopsis thaliana) roots. Pit fields were visualized and quantified. As the wall environment of plasmodesmata is highly specialized, we also designed a tool to extract the thickness of the extracellular matrix at and outside of plasmodesmata positions. We detected and quantified clear wall thinning around plasmodesmata with differences between genotypes, including the recently published plm-2 sphingolipid mutant. Our tools open avenues for quantitative approaches in the analysis of symplastic trafficking.


Assuntos
Arabidopsis/ultraestrutura , Microscopia Eletrônica/métodos , Plasmodesmos/ultraestrutura , Arabidopsis/genética , Arabidopsis/metabolismo , Genótipo , Floema/genética , Floema/metabolismo , Floema/ultraestrutura , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/ultraestrutura , Plasmodesmos/metabolismo
3.
EMBO Rep ; 20(8): e47182, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31286648

RESUMO

In eukaryotes, membrane contact sites (MCS) allow direct communication between organelles. Plants have evolved a unique type of MCS, inside intercellular pores, the plasmodesmata, where endoplasmic reticulum (ER)-plasma membrane (PM) contacts coincide with regulation of cell-to-cell signalling. The molecular mechanism and function of membrane tethering within plasmodesmata remain unknown. Here, we show that the multiple C2 domains and transmembrane region protein (MCTP) family, key regulators of cell-to-cell signalling in plants, act as ER-PM tethers specifically at plasmodesmata. We report that MCTPs are plasmodesmata proteins that insert into the ER via their transmembrane region while their C2 domains dock to the PM through interaction with anionic phospholipids. A Atmctp3/Atmctp4 loss of function mutant induces plant developmental defects, impaired plasmodesmata function and composition, while MCTP4 expression in a yeast Δtether mutant partially restores ER-PM tethering. Our data suggest that MCTPs are unique membrane tethers controlling both ER-PM contacts and cell-to-cell signalling.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Glicosiltransferases/genética , Proteínas de Membrana/genética , Plasmodesmos/genética , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Membrana Celular/metabolismo , Células Cultivadas , Retículo Endoplasmático/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Glicosiltransferases/deficiência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/deficiência , Fosfolipídeos/metabolismo , Células Vegetais , Plantas Geneticamente Modificadas , Plasmodesmos/metabolismo , Plasmodesmos/ultraestrutura , Domínios Proteicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Nicotiana/genética , Nicotiana/metabolismo , Proteína Vermelha Fluorescente
4.
Plant Physiol ; 178(2): 795-807, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30111635

RESUMO

The study of phloem transport and its vital roles in long-distance communication and carbon allocation have been hampered by a lack of suitable tools that allow high-throughput, real-time studies. Esculin, a fluorescent coumarin glucoside, is recognized by Suc transporters, including AtSUC2, which loads it into the phloem for translocation to sink tissues. These properties make it an ideal tool for use in live-imaging experiments, where it acts as a surrogate for Suc. Here, we show that esculin is translocated with a similar efficiency to Suc and, because of its ease of application and detection, demonstrate that it is an ideal tool for in vivo studies of phloem transport. We used esculin to determine the effect of different environmental cues on the velocity of phloem transport. We provide evidence that fluctuations in cotyledon Suc levels influence phloem velocity rapidly, supporting the pressure-flow model of phloem transport. Under acute changes in light levels, the phloem velocity mirrored changes in the expression of AtSUC2 This observation suggests that under certain environmental conditions, transcriptional regulation may affect the abundance of AtSUC2 and thus regulate the phloem transport velocity.


Assuntos
Arabidopsis/metabolismo , Carbono/metabolismo , Cumarínicos/metabolismo , Esculina/metabolismo , Glucosídeos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/efeitos da radiação , Transporte Biológico , Meio Ambiente , Proteínas de Membrana Transportadoras/genética , Floema/metabolismo , Proteínas de Plantas/genética
6.
Plant Physiol ; 167(4): 1211-20, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25653316

RESUMO

Using Arabidopsis (Arabidopsis thaliana) seedlings, we identified a range of small fluorescent probes that entered the translocation stream and were unloaded at the root tip. These probes had absorbance/emission maxima ranging from 367/454 to 546/576 nm and represent a versatile toolbox for studying phloem transport. Of the probes that we tested, naturally occurring fluorescent coumarin glucosides (esculin and fraxin) were phloem loaded and transported in oocytes by the sucrose transporter, AtSUC2. Arabidopsis plants in which AtSUC2 was replaced with barley (Hordeum vulgare) sucrose transporter (HvSUT1), which does not transport esculin in oocytes, failed to load esculin into the phloem. In wild-type plants, the fluorescence of esculin decayed to background levels about 2 h after phloem unloading, making it a suitable tracer for pulse-labeling studies of phloem transport. We identified additional probes, such as carboxytetraethylrhodamine, a red fluorescent probe that, unlike esculin, was stable for several hours after phloem unloading and could be used to study phloem transport in Arabidopsis lines expressing green fluorescent protein.


Assuntos
Arabidopsis/metabolismo , Corantes Fluorescentes/metabolismo , Glucosídeos/metabolismo , Hordeum/genética , Floema/metabolismo , Animais , Arabidopsis/genética , Transporte Biológico , Cumarínicos/química , Cumarínicos/metabolismo , Esculina/metabolismo , Expressão Gênica , Genes Reporter , Glucosídeos/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Oócitos , Floema/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plântula/genética , Plântula/metabolismo , Xenopus
7.
Biol Open ; 12(10)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37874138

RESUMO

Cell-cell communication is a central feature of multicellular organisms, enabling division of labour and coordinated responses. Plasmodesmata are membrane-lined pores that provide regulated cytoplasmic continuity between plant cells, facilitating signalling and transport across neighboring cells. Plant development and survival profoundly depend on the existence and functioning of these structures, bringing them to the spotlight for both fundamental and applied research. Despite the rich conceptual and translational rewards in sight, however, the study of plasmodesmata poses significant challenges. This Review will mostly focus on research published between May 2022 and May 2023 and intends to provide a short overview of recent discoveries, innovations, community resources and hypotheses.


Assuntos
Comunicação Celular , Plasmodesmos , Transdução de Sinais , Desenvolvimento Vegetal , Biologia
8.
Methods Mol Biol ; 2457: 95-107, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35349134

RESUMO

Serial block electron microscopy (SB-EM) is a technique that enables acquisition and reconstruction of 3D cellular volumes. The approach is valuable for the study of plasmodesmata (PD) as the relative positions of these structures are contained in the datasets. In this chapter, we describe how to prepare plant roots for SB-EM via fixation, embedding, and trimming steps. We also provide details and recommendations for later image acquisition and processing. The procedure is suitable to work on root vascular tissues.


Assuntos
Arabidopsis , Plasmodesmos , Imageamento Tridimensional/métodos , Microscopia Eletrônica de Varredura
9.
Biol Open ; 9(11)2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184092

RESUMO

Auxin is an endogenous small molecule with an incredibly large impact on growth and development in plants. Movement of auxin between cells, due to its negative charge at most physiological pHs, strongly relies on families of active transporters. These proteins import auxin from the extracellular space or export it into the same. Mutations in these components have profound impacts on biological processes. Another transport route available to auxin, once the substance is inside the cell, are plasmodesmata connections. These small channels connect the cytoplasms of neighbouring plant cells and enable flow between them. Interestingly, the biological significance of this latter mode of transport is only recently starting to emerge with examples from roots, hypocotyls and leaves. The existence of two transport systems provides opportunities for reciprocal cross-regulation. Indeed, auxin levels influence proteins controlling plasmodesmata permeability, while cell-cell communication affects auxin biosynthesis and transport. In an evolutionary context, transporter driven cell-cell auxin movement and plasmodesmata seem to have evolved around the same time in the green lineage. This highlights a co-existence from early on and a likely functional specificity of the systems. Exploring more situations where auxin movement via plasmodesmata has relevance for plant growth and development, and clarifying the regulation of such transport, will be key aspects in coming years.This article has an associated Future Leader to Watch interview with the author of the paper.


Assuntos
Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Plasmodesmos/metabolismo , Transporte Biológico , Comunicação Celular , Retroalimentação Fisiológica , Concentração de Íons de Hidrogênio , Redes e Vias Metabólicas , Células Vegetais/metabolismo , Desenvolvimento Vegetal , Transdução de Sinais
11.
Nat Plants ; 5(6): 604-615, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31182845

RESUMO

During phloem unloading, multiple cell-to-cell transport events move organic substances to the root meristem. Although the primary unloading event from the sieve elements to the phloem pole pericycle has been characterized to some extent, little is known about post-sieve element unloading. Here, we report a novel gene, PHLOEM UNLOADING MODULATOR (PLM), in the absence of which plasmodesmata-mediated symplastic transport through the phloem pole pericycle-endodermis interface is specifically enhanced. Increased unloading is attributable to a defect in the formation of the endoplasmic reticulum-plasma membrane tethers during plasmodesmal morphogenesis, resulting in the majority of pores lacking a visible cytoplasmic sleeve. PLM encodes a putative enzyme required for the biosynthesis of sphingolipids with very-long-chain fatty acid. Taken together, our results indicate that post-sieve element unloading involves sphingolipid metabolism, which affects plasmodesmal ultrastructure. They also raise the question of how and why plasmodesmata with no cytoplasmic sleeve facilitate molecular trafficking.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Floema/metabolismo , Plasmodesmos/ultraestrutura , Esfingolipídeos/biossíntese , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Genes de Plantas , Glucanos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana/genética , Mutação , Raízes de Plantas/metabolismo , Plasmodesmos/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA