RESUMO
Macrophage-mediated inflammation is a major contributor to obesity-associated insulin resistance. The corepressor NCoR interacts with inflammatory pathway genes in macrophages, suggesting that its removal would result in increased activity of inflammatory responses. Surprisingly, we find that macrophage-specific deletion of NCoR instead results in an anti-inflammatory phenotype along with robust systemic insulin sensitization in obese mice. We present evidence that derepression of LXRs contributes to this paradoxical anti-inflammatory phenotype by causing increased expression of genes that direct biosynthesis of palmitoleic acid and ω3 fatty acids. Remarkably, the increased ω3 fatty acid levels primarily inhibit NF-κB-dependent inflammatory responses by uncoupling NF-κB binding and enhancer/promoter histone acetylation from subsequent steps required for proinflammatory gene activation. This provides a mechanism for the in vivo anti-inflammatory insulin-sensitive phenotype observed in mice with macrophage-specific deletion of NCoR. Therapeutic methods to harness this mechanism could lead to a new approach to insulin-sensitizing therapies.
Assuntos
Ácidos Graxos Ômega-3/metabolismo , Resistência à Insulina , Macrófagos/metabolismo , Correpressor 1 de Receptor Nuclear/metabolismo , Receptores Nucleares Órfãos/genética , Animais , Receptores X do Fígado , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Correpressor 1 de Receptor Nuclear/genéticaRESUMO
OBJECTIVE: The aim of this study was to uncover the mediators and mechanistic events that facilitate the browning of white adipose tissue (WAT) in response to burns. BACKGROUND: In hypermetabolic patients (eg, burns, cancer), the browning of WAT has presented substantial clinical challenges related to cachexia, atherosclerosis, and poor clinical outcomes. Browning of the adipose tissue has recently been found to induce and sustain hypermetabolism. Although browning appears central in trauma-, burn-, or cancer-induced hypermetabolic catabolism, the mediators are essentially unknown. METHODS: WAT and blood samples were collected from patients admitted to the Ross Tilley Burn Centre at Sunnybrook Hospital. Wild type, CCR2 KO, and interleukin (IL)-6 KO male mice were purchased from Jax laboratories and subjected to a 30% total body surface area burn injury. WAT and serum collected were analyzed for browning markers, macrophages, and metabolic state via histology, gene expression, and mitochondrial respiration. RESULTS: In the present study, we show that burn-induced browning is associated with an increased macrophage infiltration, with a greater type 2 macrophage profile in the fat of burn patients. Similar to our clinical findings in burn patients, both an increase in macrophage recruitment and a type 2 macrophage profile were also observed in post burn mice. Genetic loss of the chemokine CCR2 responsible for macrophage migration to the adipose impairs burn-induced browning. Mechanistically, we show that macrophages recruited to burn-stressed subcutaneous WAT (sWAT) undergo alternative activation to induce tyrosine hydroxylase expression and catecholamine production mediated by IL-6, factors required for browning of sWAT. CONCLUSION: Together, our findings uncover macrophages as the key instigators and missing link in trauma-induced browning.
Assuntos
Tecido Adiposo Marrom/fisiopatologia , Tecido Adiposo Branco/fisiopatologia , Queimaduras/fisiopatologia , Ativação de Macrófagos/fisiologia , Adulto , Animais , Biomarcadores/sangue , Queimaduras/sangue , Queimaduras/imunologia , Estudos de Casos e Controles , Feminino , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Reação em Cadeia da PolimeraseRESUMO
KEY POINTS: Vascular brain lesions and atherosclerosis are two similar conditions that are characterized by increased inflammation and oxidative stress. Non-invasive imaging in a murine model of atherosclerosis showed vascular brain damage and peripheral inflammation. In this study, exercise training reduced magnetic resonance imaging-detected abnormalities, insulin resistance and markers of oxidative stress and inflammation in old ApoE-/- mice. Our results demonstrate the protective effect of exercise on neurovascular damage in the ageing brain of ApoE-/- mice. ABSTRACT: Vascular brain lesions, present in advanced atherosclerosis, share pathological hallmarks with peripheral vascular lesions, such as increased inflammation and oxidative stress. Physical activity reduces these peripheral risk factors, but its cerebrovascular effect is less documented, especially by non-invasive imaging. Through a combination of in vivo and post-mortem techniques, we aimed to characterize vascular brain damage in old ApoE-/- mice fed a high-cholesterol (HC) diet with dietary controlled intake. We then sought to determine the beneficial effects of exercise training on oxidative stress and inflammation in the brain as a treatment option in an ageing atherosclerosis mouse model. Using in vivo magnetic resonance imaging (MRI) and biological markers of oxidative stress and inflammation, we evaluated the occurrence of vascular abnormalities in the brain of HC-diet fed ApoE-/- mice >70 weeks old, its association with local and systemic oxidative stress and inflammation, and whether both can be modulated by exercise. Exercise training significantly reduced both MRI-detected abnormalities (present in 71% of untrained vs. 14% of trained mice) and oxidative stress (lipid peroxidation, 9.1 ± 1.4 vs. 5.2 ± 0.9 µmol mg-1 ; P < 0.01) and inflammation (interleukin-1ß, 226.8 ± 27.1 vs. 182.5 ± 21.5 pg mg-1 ; P < 0.05) in the brain, and the mortality rate. Exercise also decreased peripheral insulin resistance, oxidative stress and inflammation, but significant associations were seen only within brain markers. Highly localized vascular brain damage is a frequent finding in this ageing atherosclerosis model, and exercise is able to reduce this outcome and improve lifespan. In vivo MRI evaluated both the neurovascular damage and the protective effect of exercise.
Assuntos
Encéfalo/patologia , Dieta Hiperlipídica , Condicionamento Físico Animal , Envelhecimento/fisiologia , Animais , Aorta/diagnóstico por imagem , Aorta/metabolismo , Apolipoproteínas E/genética , Biomarcadores/sangue , Biomarcadores/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Catalase/metabolismo , Colesterol/sangue , Feminino , Glutationa Peroxidase/metabolismo , Inflamação/sangue , Inflamação/metabolismo , Inflamação/patologia , Inflamação/terapia , Interleucina-1beta/sangue , Interleucina-1beta/metabolismo , Imageamento por Ressonância Magnética , Masculino , Malondialdeído/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nitratos/metabolismo , Nitritos/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Extensively burned patients often suffer from sepsis, a complication that enhances postburn hypermetabolism and contributes to increased incidence of multiple organ failure, morbidity and mortality. Despite the clinical importance of burn sepsis, the molecular and cellular mechanisms of such infection-related metabolic derangements and organ dysfunction are still largely unknown. We recently found that upon endoplasmic reticulum (ER) stress, the white adipose tissue (WAT) interacts with the liver via inflammatory and metabolic signals leading to profound hepatic alterations, including hepatocyte apoptosis and hepatic fatty infiltration. We therefore hypothesized that burn plus infection causes an increase in lipolysis of WAT after major burn, partially through induction of ER stress, contributing to hyperlipidemia and profound hepatic lipid infiltration. We used a two-hit rat model of 60% total body surface area scald burn, followed by intraperitoneal (IP) injection of Pseudomonas Aeruginosa-derived lipopolysaccharide (LPS) 3 d postburn. One day later, animals were euthanized and liver and epididymal WAT (EWAT) samples were collected for gene expression, protein analysis and histological study of inflammasome activation, ER stress, apoptosis and lipid metabolism. Our results showed that burn plus LPS profoundly increased lipolysis in WAT associated with significantly increased hepatic lipid infiltration. Burn plus LPS augmented ER stress by upregulating CHOP and activating ATF6, inducing NLRP3 inflammasome activation and leading to increased apoptosis and lipolysis in WAT with a distinct enzymatic mechanism related to inhibition of AMPK signaling. In conclusion, burn sepsis causes profound alterations in WAT and liver that are associated with changes in organ function and structure.
RESUMO
The endoplasmic reticulum (ER) is an organelle important for protein synthesis and folding, lipid synthesis and Ca(2+) homoeostasis. Consequently, ER stress or dysfunction affects numerous cellular processes and has been implicated as a contributing factor in several pathophysiological conditions. Tunicamycin induces ER stress in various cell types in vitro as well as in vivo. In mice, a hallmark of tunicamycin administration is the development of fatty livers within 24-48 hrs accompanied by hepatic ER stress. We hypothesized that tunicamycin would induce ER stress in adipose tissue that would lead to increased lipolysis and subsequently to fatty infiltration of the liver and hepatomegaly. Our results show that intraperitoneal administration of tunicamycin rapidly induced an ER stress response in adipose tissue that correlated with increased circulating free fatty acids (FFAs) and glycerol along with decreased adipose tissue mass and lipid droplet size. Furthermore, we found that in addition to fatty infiltration of the liver as well as hepatomegaly, lipid accumulation was also present in the heart, skeletal muscle and kidney. To corroborate our findings to a clinical setting, we examined adipose tissue from burned patients where increases in lipolysis and the development of fatty livers have been well documented. We found that burned patients displayed significant ER stress within adipose tissue and that ER stress augments lipolysis in cultured human adipocytes. Our results indicate a possible role for ER stress induced lipolysis in adipose tissue as an underlying mechanism contributing to increases in circulating FFAs and fatty infiltration into other organs.
Assuntos
Tecido Adiposo/patologia , Estresse do Retículo Endoplasmático , Lipólise , Tecido Adiposo/efeitos dos fármacos , Animais , Queimaduras/patologia , Queimaduras/cirurgia , Separação Celular , Células Cultivadas , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ácidos Graxos/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Humanos , Lipólise/efeitos dos fármacos , Masculino , Camundongos Endogâmicos BALB C , Especificidade de Órgãos/efeitos dos fármacos , Tunicamicina/farmacologiaRESUMO
The link between intra-abdominal adiposity and type II diabetes has been known for decades, and adipose tissue macrophage (ATM)-associated inflammation has recently been linked to insulin resistance. However, the mechanisms associated with ATM recruitment remain ill defined. Herein, we describe in vitro chemotaxis studies, in which adipocyte conditioned medium was used to stimulate macrophage migration. We demonstrate that tumor necrosis factor alpha and free fatty acids, key inflammatory stimuli involved in obesity-associated autocrine/paracrine inflammatory signaling, stimulate adipocyte expression and secretion of macrophage chemoattractants. Pharmacological studies showed that peroxisome proliferator-activated receptor gamma agonists and glucocorticoids potently inhibit adipocyte- induced recruitment of macrophages. This latter effect was mediated by the glucocorticoid receptor, which led to decreased chemokine secretion and expression. In vivo results were quite comparable; treatment of high fat diet-fed mice with dexamethasone prevented ATM accumulation in epididymal fat. This decrease in ATM was most pronounced for the proinflammatory F4/80(+), CD11b(+), CD11c(+) M-1-like ATM subset. Overall, our results elucidate a beneficial function of peroxisome proliferator-activated receptor gamma activation and glucocorticoid receptor/glucocorticoids in adipose tissue and indicate that pharmacologic prevention of ATM accumulation could be beneficial.
Assuntos
Adipócitos/imunologia , Quimiotaxia , Glucocorticoides/farmacologia , Macrófagos/imunologia , Tiazolidinedionas/farmacologia , Adipócitos/efeitos dos fármacos , Animais , Linhagem Celular , Quimiotaxia/efeitos dos fármacos , Ácidos Graxos não Esterificados/imunologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/imunologiaRESUMO
Tissue macrophage inflammatory pathways contribute to obesity-associated insulin resistance. Here, we have examined the efficacy and mechanisms of action of a novel anti-inflammatory compound (HE3286) in vitro and in vivo. In primary murine macrophages, HE3286 attenuates LPS- and TNFalpha-stimulated inflammation. In Zucker diabetic fatty rats, inflammatory cytokine/chemokine expression was downregulated in liver and adipose tissue by HE3286 treatment, as was macrophage infiltration into adipose tissue. In line with reduced inflammation, HE3286 treatment normalized fasting and fed glucose levels, improved glucose tolerance, and enhanced skeletal muscle and liver insulin sensitivity, as assessed by hyperinsulinemic euglycemic clamp studies. In phase 2 clinical trials, HE3286 treatment led to an enhancement in insulin sensitivity in humans. Gluconeogenic capacity was also reduced by HE3286 treatment, as evidenced by a reduced glycemic response during pyruvate tolerance tests and decreased basal hepatic glucose production (HGP) rates. Since serum levels of gluconeogenic substrates were decreased by HE3286, it indicates that the reduction of both intrinsic gluconeogenic capacity and substrate availability contributes to the decrease in HGP. Lipidomic analysis revealed that HE3286 treatment reduced liver cholesterol and triglyceride content, leading to a feedback elevation of LDL receptor and HMG-CoA reductase expression. Accordingly, HE3286 treatment markedly decreased total serum cholesterol. In conclusion, HE3286 is a novel anti-inflammatory compound, which displays both glucose-lowering and cholesterol-lowering effects.
Assuntos
Desidroepiandrosterona/análogos & derivados , Inflamação/tratamento farmacológico , Resistência à Insulina , Fígado/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Obesidade/tratamento farmacológico , Adulto , Análise de Variância , Animais , Glicemia/metabolismo , Western Blotting , Movimento Celular/efeitos dos fármacos , Quimiocinas/metabolismo , Citocinas/metabolismo , Desidroepiandrosterona/farmacologia , Feminino , Expressão Gênica , Gluconeogênese/efeitos dos fármacos , Técnica Clamp de Glucose , Teste de Tolerância a Glucose , Humanos , Imuno-Histoquímica , Inflamação/metabolismo , Lipídeos/sangue , Lipopolissacarídeos , Fígado/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Ratos , Ratos ZuckerRESUMO
Severely burned patients suffer from a hypermetabolic syndrome that can last for years after the injury has resolved. The underlying cause of these metabolic alterations most likely involves the persistent elevated catecholamine levels that follow the surge induced by thermal injury. At the cellular level, endoplasmic reticulum (ER) stress in metabolic tissues is a hallmark observed in patients following burn injury and is associated with several detrimental effects. Therefore, ER stress could be the underlying cellular mechanism of persistent hypermetabolism in burned patients. Here, we show that catecholamines induce ER stress and that adreno-receptor blockers reduce stress responses in the HepG2 hepatocyte cell line. Our results also indicate that norepinephrine (NE) significantly induces ER stress in HepG2 cells and 3T3L1 mouse adipocytes. Furthermore, we demonstrate that the alpha-1 blocker, prazosin, and beta blocker, propranolol, block ER stress induced by NE. We also show that the effects of catecholamines in inducing ER stress are cell type-specific, as NE treatment failed to evoke ER stress in human fibroblasts. Thus, these findings reveal the mechanisms used by catecholamines to alter metabolism and suggest inhibition of the receptors utilized by these agents should be further explored as a potential target for the treatment of ER stress-mediated disease.
Assuntos
Catecolaminas/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Fibroblastos/fisiologia , Células Hep G2/fisiologia , Receptores Adrenérgicos alfa/fisiologia , Receptores Adrenérgicos beta/fisiologia , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Técnicas de Cultura de Células , Fibroblastos/efeitos dos fármacos , Células Hep G2/efeitos dos fármacos , Humanos , Prazosina/farmacologia , Propranolol/farmacologiaRESUMO
Recently it has become evident that obesity is associated with low-grade chronic inflammation. The transcription factor peroxisome proliferator-activated receptor alpha (PPARalpha) has been shown to have a strong antiinflammatory action in liver. However, the role of PPARalpha in obesity-induced inflammation is much less clear. Therefore, the aim of our study was to determine whether PPARalpha plays a role in obesity-induced hepatic inflammation. To induce obesity, wild-type sv129 and PPARalpha(-/-) mice were exposed to a chronic high-fat diet (HFD), using a low-fat diet (LFD) as control. In wild-type mice, HFD significantly increased the hepatic and adipose expression of numerous genes involved in inflammation. Importantly, this effect was amplified in PPARalpha(-/-) mice, suggesting an antiinflammatory role of PPARalpha in liver and adipose tissue. Further analysis identified specific chemokines and macrophage markers, including monocyte chemotactic protein 1 and F4/80(+), that were elevated in liver and adipose tissue of PPARalpha(-/-) mice, indicating increased inflammatory cell recruitment in the knockout animals. When all groups of mice were analyzed together, a significant correlation between hepatic triglycerides and expression of inflammatory markers was observed. Many inflammatory genes that were up-regulated in PPARalpha(-/-) livers by HFD were down-regulated by treatment with the PPARalpha ligand Wy-14643 under normal nonsteatotic conditions, either in vivo or in vitro, suggesting an antiinflammatory effect of PPARalpha that is independent of reduction in liver triglycerides. In conclusion, our results suggest that PPARalpha protects against obesity-induced chronic inflammation in liver by reducing hepatic steatosis, by direct down-regulation of inflammatory genes, and by attenuating inflammation in adipose tissue.
Assuntos
Hepatite Animal/etiologia , Hepatite Animal/prevenção & controle , Obesidade/complicações , PPAR alfa/fisiologia , Tecido Adiposo/química , Tecido Adiposo/metabolismo , Animais , Células Cultivadas , Dieta Aterogênica , Dieta com Restrição de Gorduras , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Hepatite Animal/genética , Fígado/química , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Obesidade/genética , Análise de Sequência com Séries de Oligonucleotídeos , PPAR alfa/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Triglicerídeos/análiseRESUMO
Glycerol, a product of adipose tissue lipolysis, is an important substrate for hepatic glucose synthesis. However, little is known about the regulation of hepatic glycerol metabolism. Here we show that several genes involved in the hepatic metabolism of glycerol, i.e., cytosolic and mitochondrial glycerol 3-phosphate dehydrogenase (GPDH), glycerol kinase, and glycerol transporters aquaporin 3 and 9, are upregulated by fasting in wild-type mice but not in mice lacking PPARalpha. Furthermore, expression of these genes was induced by the PPARalpha agonist Wy14643 in wild-type but not PPARalpha-null mice. In adipocytes, which express high levels of PPARgamma, expression of cytosolic GPDH was enhanced by PPARgamma and beta/delta agonists, while expression was decreased in PPARgamma(+/-) and PPARbeta/delta(-/-) mice. Transactivation, gel shift, and chromatin immunoprecipitation experiments demonstrated that cytosolic GPDH is a direct PPAR target gene. In line with a stimulating role of PPARalpha in hepatic glycerol utilization, administration of synthetic PPARalpha agonists in mice and humans decreased plasma glycerol. Finally, hepatic glucose production was decreased in PPARalpha-null mice simultaneously fasted and exposed to Wy14643, suggesting that the stimulatory effect of PPARalpha on gluconeogenic gene expression was translated at the functional level. Overall, these data indicate that PPARalpha directly governs glycerol metabolism in liver, whereas PPARgamma regulates glycerol metabolism in adipose tissue.
Assuntos
Glicerol/metabolismo , Fígado/metabolismo , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores Citoplasmáticos e Nucleares/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Células 3T3 , Animais , Sequência de Bases , Carcinoma Hepatocelular , Linhagem Celular Tumoral , Clonagem Molecular , Primers do DNA , Regulação da Expressão Gênica , Homeostase , Humanos , Neoplasias Hepáticas , Camundongos , Camundongos Knockout , Modelos Animais , Análise de Sequência com Séries de Oligonucleotídeos , Plasmídeos , Receptores Citoplasmáticos e Nucleares/fisiologia , Proteínas Recombinantes/metabolismo , Fatores de Transcrição/fisiologia , TransfecçãoRESUMO
The endoplasmic reticulum (ER) is a critical organelle that synthesizes secretory proteins and serves as the main calcium storage site of the cell. The accumulation of unfolded proteins at the ER results in ER stress. Although the association between ER stress and the pathogenesis of many metabolic conditions have been well characterized using both in vivo and in vitro models, no standardized model concerning ER stress exists. Here, we report a standardized model of ER stress using two well-characterized ER stress-inducing agents, thapsigargin and tunicamycin. Our aim in this current study was 2-fold: to characterize and establish which agent is optimal for in vitro use to model acute ER stress and to evaluate which agent is optimal for in vivo use. To study the first aim we used two well-established metabolic cell lines; human hepatocellular carcinoma (HepG2s) and differentiated mouse adipocytes (3T3-L1). In the second aim we utilized C57BL/6J mice that were randomized into three treatment groups of sham, thapsigargin, and tunicamycin. Our in vitro results showed that tunicamycin worked as a rapid and efficacious inducer of ER stress in adipocytes consistently, whereas thapsigargin and tunicamycin were equally effective in inducing ER stress in hepatocytes. In regards to our in vivo results, we saw that tunicamycin was superior in not only inducing ER stress but also recapturing the metabolic alterations associated with ER stress. Thus, our findings will help guide and inform researchers as to which ER stress agent is appropriate with regards to their model.
Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Immunoblotting , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Tapsigargina/farmacologia , Tunicamicina/farmacologiaRESUMO
Peroxisome proliferator-activated receptors (PPARs) are transcription factors involved in the regulation of numerous metabolic processes. The PPARalpha isotype is abundant in liver and activated by fasting. However, it is not very clear what other nutritional conditions activate PPARalpha. To examine whether PPARalpha mediates the effects of chronic high-fat feeding, wild-type and PPARalpha null mice were fed a low-fat diet (LFD) or high-fat diet (HFD) for 26 wk. HFD and PPARalpha deletion independently increased liver triglycerides. Furthermore, in wild-type mice HFD was associated with a significant increase in hepatic PPARalpha mRNA and plasma free fatty acids, leading to a PPARalpha-dependent increase in expression of PPARalpha marker genes CYP4A10 and CYP4A14. Microarray analysis revealed that HFD increased hepatic expression of characteristic PPARalpha target genes involved in fatty acid oxidation in a PPARalpha-dependent manner, although to a lesser extent than fasting or Wy14643. Microarray analysis also indicated functional compensation for PPARalpha in PPARalpha null mice. Remarkably, in PPARalpha null mice on HFD, PPARgamma mRNA was 20-fold elevated compared with wild-type mice fed a LFD, reaching expression levels of PPARalpha in normal mice. Adenoviral overexpression of PPARgamma in liver indicated that PPARgamma can up-regulate genes involved in lipo/adipogenesis but also characteristic PPARalpha targets involved in fatty acid oxidation. It is concluded that 1) PPARalpha and PPARalpha-signaling are activated in liver by chronic high-fat feeding; and 2) PPARgamma may compensate for PPARalpha in PPARalpha null mice on HFD.
Assuntos
Regulação da Expressão Gênica , Fígado/metabolismo , PPAR alfa/fisiologia , Adenoviridae/genética , Animais , Citocromo P-450 CYP4A/química , Citocromo P-450 CYP4A/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Família 4 do Citocromo P450 , Gorduras na Dieta/metabolismo , Jejum , Privação de Alimentos , Técnicas de Transferência de Genes , Glucose/metabolismo , Teste de Tolerância a Glucose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxigenases de Função Mista/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , PPAR gama/metabolismo , Reação em Cadeia da Polimerase , Pirimidinas/farmacologia , RNA/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais , Fatores de Tempo , Regulação para CimaRESUMO
PPARs (peroxisome-proliferator-activated receptors) alpha, beta/delta and gamma are a group of transcription factors that are involved in numerous processes, including lipid metabolism and adipogenesis. By comparing liver mRNAs of wild-type and PPARalpha-null mice using microarrays, a novel putative target gene of PPARalpha, G0S2 (G0/G1 switch gene 2), was identified. Hepatic expression of G0S2 was up-regulated by fasting and by the PPARalpha agonist Wy14643 in a PPARalpha-dependent manner. Surprisingly, the G0S2 mRNA level was highest in brown and white adipose tissue and was greatly up-regulated during mouse 3T3-L1 and human SGBS (Simpson-Golabi-Behmel syndrome) adipogenesis. Transactivation, gel shift and chromatin immunoprecipitation assays indicated that G0S2 is a direct PPARgamma and probable PPARalpha target gene with a functional PPRE (PPAR-responsive element) in its promoter. Up-regulation of G0S2 mRNA seemed to be specific for adipogenesis, and was not observed during osteogenesis or myogenesis. In 3T3-L1 fibroblasts, expression of G0S2 was associated with growth arrest, which is required for 3T3-L1 adipogenesis. Together, these data indicate that G0S2 is a novel target gene of PPARs that may be involved in adipocyte differentiation.
Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , PPAR alfa/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Adipogenia , Animais , Sequência de Bases , Linhagem Celular , Retículo Endoplasmático/metabolismo , Deleção de Genes , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Fígado/citologia , Masculino , Camundongos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , PPAR alfa/genética , Regiões Promotoras Genéticas/genética , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Elementos de Resposta/genética , Homologia de Sequência do Ácido Nucleico , Especificidade por Substrato , Regulação para CimaRESUMO
Recent discoveries have highlighted the novel metabolic functions of adipose tissue in enhancing hypermetabolism after trauma. As the exact function and expression profiles of serum lipids and free fatty acids (FFA) are essentially unknown, we determined the lipidomic expression profile after burn in correlation to clinical outcomes to identify important lipid mediators affecting post-burn outcomes. We conducted a prospective cohort study with 46 adult burn patients and 5 healthy controls at the Ross Tilley Burn Center in Toronto, Canada. Patients were stratified based on major demographic and clinical variables, including age, burn severity, mortality, and sepsis. Serum FFAs and inflammatory markers were measured during acute hospital stay. We found that FFAs were acutely elevated post-burn and returned to baseline over time. Greater burn severity and age were associated with an impaired acute response in unsaturated FFAs and pro-inflammatory cytokines. Elevations in saturated and mono-unsaturated FFAs correlated significantly to increased mortality. In summary, persistent elevation of unsaturated lipids was associated with a functionally altered inflammatory-immunological milieu and worse clinical outcomes. The present lipidomic analysis indicates profound alterations in the lipid profile after burn by characterizing key lipids as potential diagnostic and outcome indicators in critically injured patients.
Assuntos
Queimaduras/sangue , Queimaduras/diagnóstico , Lipídeos/sangue , Adulto , Fatores Etários , Biomarcadores , Queimaduras/complicações , Queimaduras/mortalidade , Estudos de Casos e Controles , Citocinas/sangue , Ácidos Graxos não Esterificados/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Razão de Chances , Prognóstico , Sepse/etiologia , Índice de Gravidade de Doença , Fatores de TempoRESUMO
OBJECTIVE: Atherosclerotic plaque development in the arterial wall is the result of complex interaction between the wall's endothelial layer and blood hemodynamics. However, the interaction between hemodynamic parameters and inflammation in plaque evolution is not yet fully understood. The aim of the present study was to investigate the relation between wall shear stress (WSS) and vessel wall inflammation during atherosclerotic plaque development in a minipig model of carotid stenosis. METHODS: A surgical procedure was performed to create left common carotid artery stenosis by placement of a perivascular cuff in minipigs under atherogenic diet. Animals were followed up on 3T MRI, 1 week after surgery and 3, 6, and 8 months after initiation of the diet. Computational fluid dynamics simulation estimated WSS distribution for the first imaging point. Vascular geometries were co-registered for direct comparison of plaque development and features (Gadolinium- and USPIO-Contrast Enhanced MRI, for permeability and inflammation respectively) with the initial WSS. Histological analysis was performed and sections were matched to MR images, based on spatial landmarks. RESULTS: Vessel wall thickening, permeability and inflammation were observed distally from the stenosis. They were eccentric and facing regions of normal wall thickness. Histological analysis confirmed eccentric plaque formation with lipid infiltration, intimal thickening and medial degradation. High phagocytic activity in the stenosis region was co-localized with high WSS, corresponding to intense medial degradation observed on histology samples. CONCLUSION: Lower WSS promotes atherosclerotic plaque development distal to an induced stenosis. Vascular and perivascular inflammation locations were predominant in the high WSS stenosis segment, where medial thinning was the major consequence.
Assuntos
Aterosclerose/patologia , Animais , Aterosclerose/diagnóstico por imagem , Aterosclerose/etiologia , Fenômenos Biomecânicos , Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/patologia , Espessura Intima-Media Carotídea , Endotélio Vascular/patologia , Hipercolesterolemia/complicações , Fagócitos/patologia , Suínos , Porco Miniatura , Vasculite/metabolismo , Vasculite/patologiaRESUMO
Burn is accompanied by long-lasting immuno-metabolic alterations referred to as hypermetabolism that are characterized by a considerable increase in resting energy expenditure and substantial whole-body catabolism. In burned patients, the length and magnitude of the hypermetabolic state is the highest of all patients and associated with profoundly increased morbidity and mortality. Unfortunately, the mechanisms involved in hypermetabolism are essentially unknown. We hypothesized that the adipose tissue plays a central role for the induction and persistence of hypermetabolism post-burn injury. Here, we show that burn induces a switch in the phenotype of the subcutaneous fat from white to beige, with associated characteristics such as increased mitochondrial mass and UCP1 expression. Our results further demonstrate the significant role of catecholamines and interleukin-6 in this process. We conclude that subcutaneous fat remodeling and browning represent an underlying mechanism that explains the elevated energy expenditure in burn-induced hypermetabolism.
Assuntos
Tecido Adiposo Branco/metabolismo , Queimaduras/metabolismo , Animais , Catecolaminas/metabolismo , Metabolismo Energético/fisiologia , Feminino , Humanos , Interleucina-6/metabolismo , Canais Iônicos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteína Desacopladora 1RESUMO
Over the last decades advancements have improved survival and outcomes of severely burned patients except one population, elderly. The Lethal Dose 50 (LD50) burn size in elderly has remained the same over the past three decades, and so has morbidity and mortality, despite the increased demand for elderly burn care. The objective of this study is to gain insights on why elderly burn patients have had such a poor outcome when compared to adult burn patients. The significance of this project is that to this date, burn care providers recognize the extreme poor outcome of elderly, but the reason remains unclear. In this prospective translational trial, we have determined clinical, metabolic, inflammatory, immune, and skin healing aspects. We found that elderly have a profound increased mortality, more premorbid conditions, and stay at the hospital for longer, p < 0.05. Interestingly, we could not find a higher incidence of infection or sepsis in elderly, p > 0.05, but a significant increased incidence of multi organ failure, p < 0.05. These clinical outcomes were associated with a delayed hypermetabolic response, increased hyperglycemic and hyperlipidemic responses, inversed inflammatory response, immune-compromisation and substantial delay in wound healing predominantly due to alteration in characteristics of progenitor cells, p < 0.05. In summary, elderly have substantially different responses to burns when compared to adults associated with increased morbidity and mortality. This study indicates that these responses are complex and not linear, requiring a multi-modal approach to improve the outcome of severely burned elderly.
Assuntos
Queimaduras/etiologia , Queimaduras/metabolismo , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Glicemia , Queimaduras/diagnóstico , Queimaduras/epidemiologia , Estudos de Coortes , Comorbidade , Citocinas/metabolismo , Derme/metabolismo , Derme/patologia , Metabolismo Energético , Epiderme/metabolismo , Epiderme/patologia , Feminino , Humanos , Inflamassomos/metabolismo , Mediadores da Inflamação/metabolismo , Metabolismo dos Lipídeos , Masculino , Pessoa de Meia-Idade , Mortalidade , Índice de Gravidade de Doença , CicatrizaçãoRESUMO
Peroxisome proliferator activated receptors (PPARs) are a group of ligand-activated transcription factors that play critical roles in the regulation of energy metabolism. Synthetic agonists for these receptors are used in the treatment of type 2 diabetes mellitus and dyslipidemia. Current data linking PPAR and/or PPAR ligands with the treatment of insulin resistance will be critically reviewed, with the focus on important advances over the past year.
Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Resistência à Insulina , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Animais , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Hipoglicemiantes/farmacologia , LigantesRESUMO
Inflammation is now recognized as a major factor contributing to type 2 diabetes (T2D). However, while the mechanisms and consequences associated with white adipose tissue inflammation are well described, very little is known concerning the situation in skeletal muscle. The aim of this study was to investigate, in vitro and in vivo, how skeletal muscle inflammation develops and how in turn it modulates local and systemic insulin sensitivity in different mice models of T2D and in humans, focusing on the role of the chemokine MCP1. Here, we found that skeletal muscle inflammation and macrophage markers are increased and associated with insulin resistance in mice models and humans. In addition, we demonstrated that intra-muscular TNFα expression is exclusively restricted to the population of intramuscular leukocytes and that the chemokine MCP1 was associated with skeletal muscle inflammatory markers in these models. Furthermore, we demonstrated that exposure of C2C12 myotubes to palmitate elevated the production of the chemokine MCP1 and that the muscle-specific overexpression of MCP1 in transgenic mice induced the local recruitment of macrophages and altered local insulin sensitivity. Overall our study demonstrates that skeletal muscle inflammation is clearly increased in the context of T2D in each one of the models we investigated, which is likely consecutive to the lipotoxic environment generated by peripheral insulin resistance, further increasing MCP1 expression in muscle. Consequently, our results suggest that MCP1-mediated skeletal muscle macrophages recruitment plays a role in the etiology of T2D.
Assuntos
Quimiocina CCL2/fisiologia , Resistência à Insulina/imunologia , Macrófagos/imunologia , Músculo Esquelético/imunologia , Miosite/imunologia , Animais , Linhagem Celular , Movimento Celular , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Obesos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Miosite/metabolismoRESUMO
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that play pivotal roles in the regulation of a very large number of biological processes including inflammation. Using specific examples, this paper focuses on the interplay between PPARs and innate immunity/inflammation and, when possible, compares it among species. We focus on recent discoveries establishing how inflammation and PPARs interact in the context of obesity-induced inflammation and type 2 diabetes, mostly in mouse and humans. We illustrate that PPAR γ ability to alleviate obesity-associated inflammation raises an interesting pharmacologic potential. In the light of recent findings, the protective role of PPAR α and PPAR ß / δ against the hepatic inflammatory response is also addressed. While PPARs agonists are well-established agents that can treat numerous inflammatory issues in rodents and humans, surprisingly very little has been described in other species. We therefore also review the implication of PPARs in inflammatory bowel disease; acute-phase response; and central, cardiac, and endothelial inflammation and compare it along different species (mainly mouse, rat, human, and pig). In the light of the data available in the literature, there is no doubt that more studies concerning the impact of PPAR ligands in livestock should be undertaken because it may finally raise unconsidered health and sanitary benefits.