Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Carcinogenesis ; 43(6): 557-570, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35184170

RESUMO

The factors (environmental and genetic) contributing to basal cell carcinoma (BCC) pathogenesis are well-established; however, effective agents for BCC prevention are marred by toxic side-effects. Herein, we assessed the efficacy of flavonolignan silibinin against ultraviolet B (UVB)-induced BCC in Ptch+/- (heterozygous patched homolog 1 gene) mouse model. Both male and female Ptch+/- mice were irradiated with a 240 mJ/cm2 UVB dose 3 times/week for 26 or 46 weeks, with or without topical application of silibinin (9 mg/200 µl in acetone, applied 30 min before or after UVB exposure). Results indicated that silibinin application either pre- or post-UVB exposure for 26 weeks significantly decreased the number of BCC lesions by 65% and 39% (P < 0.001 for both) and the area covered by BCCs (72% and 45%, P < 0.001 for both), respectively, compared to UVB alone. Furthermore, continuous UVB exposure for 46 weeks increased the BCC lesion number and the BCC area covered by ~6 and ~3.4 folds (P < 0.001), respectively. Notably, even in this 46 week prolonged UVB exposure, silibinin (irrespective of pre- or post-UVB treatment) significantly halted the growth of BCCs by 81-94% (P < 0.001) as well as other epidermal lesions; specifically, silibinin treated tissues had less epidermal dysplasia, fibrosarcoma, and squamous cell carcinoma. Immunohistochemistry and immunofluorescence studies revealed that silibinin significantly decreased basal cell proliferation (Ki-67) and the expression of cytokeratins (14 and 15), and Hedgehog signaling mediators Smo and Gli1 in the BCC lesions. Together, our findings demonstrate strong potential of silibinin to be efficacious in preventing the growth and progression of UVB-induced BCC.


Assuntos
Carcinoma Basocelular , Neoplasias Cutâneas , Animais , Carcinoma Basocelular/tratamento farmacológico , Carcinoma Basocelular/metabolismo , Carcinoma Basocelular/prevenção & controle , Feminino , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Masculino , Camundongos , Receptor Patched-1/genética , Silibina/farmacologia , Silibina/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/prevenção & controle , Raios Ultravioleta/efeitos adversos
2.
Food Chem ; 454: 139749, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38797104

RESUMO

Plastic food packaging, with its harmful migration of microplastics and nanoplastics into food, presents significant ecological imbalance and human health risks. In this regard, using food and agricultural byproducts as packaging materials reduces environmental and economic concerns and supports their sustainable management. Herein, cellulosic residue from corncob was employed as a renewable source for developing biodegradable packaging films. It was solubilized in ZnCl2 solution, crosslinked with Ca2+ ions, and plasticized with sorbitol to form films and used to improve the shelf-life of raspberries. The optimized film possesses water vapor permeability, tensile strength, and elongation at break of 1.8(4) x10-10 g-1 s-1 Pa-1, 4.7(1) MPa, and 15.4(7)%, respectively. It displays UV-blocking and antioxidant properties and biodegrades within 29 days at 24% soil moisture. It preserves raspberries for 7 and 5 more days at room temperature and refrigeration conditions, respectively, compared to polystyrene film. Overall, more value addition could be envisioned from agricultural residues to minimize post-harvest losses and food waste through biodegradable packaging, which also aids in mitigating plastic perils.


Assuntos
Embalagem de Alimentos , Conservação de Alimentos , Rubus , Embalagem de Alimentos/instrumentação , Rubus/química , Conservação de Alimentos/métodos , Conservação de Alimentos/instrumentação , Permeabilidade , Resistência à Tração , Plásticos Biodegradáveis/química , Biodegradação Ambiental , Frutas/química , Celulose/química
3.
Pharmaceuticals (Basel) ; 16(12)2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38139779

RESUMO

Phytochemicals are natural plant-derived products that provide significant nutrition, essential biomolecules, and flavor as part of our diet. They have long been known to confer protection against several diseases via their anti-inflammatory, immune-regulatory, anti-microbial, and several other properties. Deciphering the role of phytochemicals in the prevention, inhibition, and treatment of cancer-unrestrained cell proliferation due to the loss of tight regulation on cell growth and replication-has been the focus of recent research. Particularly, the immunomodulatory role of phytochemicals, which is pivotal in unchecked cell proliferation and metastasis, has recently been studied extensively. The immune system is a critical component of the tumor microenvironment, and it plays essential roles in both preventing and promoting oncogenesis. Immunomodulation includes stimulation, amplification, or inactivation of some stage(s) of the immune response. Phytochemicals and their products have demonstrated immune regulation, such as macrophage migration, nitric oxide synthase inhibition, lymphocyte, T-cell, and cytokine stimulation, natural killer cell augmentation, and NFκB, TNF, and apoptosis regulation. There is a dearth of extensive accounts of the immunomodulatory effects of phytochemicals in cancer; thus, we have compiled these effects with mechanistic aspects of dietary phytochemicals in cancer, highlighting promising candidates and ongoing clinical trials on immunotherapeutic strategies to mitigate oncogenesis.

4.
J Cancer Prev ; 26(4): 266-276, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35047453

RESUMO

Given the high rates of incidence and mortality associated with pancreatic cancer (PanC), there is a need to develop alternative strategies to target PanC. Recent studies have demonstrated that fruits of bitter melon (Momordica charantia) exhibit strong anticancer efficacy against PanC. However, the comparative effects of different bitter melon varieties have not been investigated. This has important implications, given that several bitter melon cultivars are geographically available but their differential effects are not known; and that on a global level, individuals could consume different bitter melon varieties sourced from different cultivars for anti-PanC benefits. Considering these shortcomings, in the present study, comparative pre-clinical anti-PanC studies have been conducted using lyophilized-juice and aqueous-methanolic extracts of the two most widely consumed but geographically diverse bitter melon varieties (Chinese [bitter melon juice; BMJ] and Indian [bitter melon extract; BME] variants). We observed that both BMJ and BME possess comparable efficacy against PanC growth and progression; specifically, these preparations have the potential to (a) inhibit PanC cell proliferation and induce cell death; (b) suppress PanC tumor growth, proliferation, and induce apoptosis; (c) restrict capillary tube formation by human umbilical vein endothelial cells, and decrease angiogenesis in PanC tumor xenografts. Thus, given the comparable pre-clinical anti-PanC efficacy of bitter melon cultivars, the geographical non-availability of a certain cultivar should not be a limiting factor in selecting a variant for moving forward for future clinical use/clinical trials either as a preventive or a therapeutic alternative for targeting PanC.

5.
J Tradit Complement Med ; 10(3): 236-244, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32670818

RESUMO

Skin is the largest human organ that shields the inner body from contact with xenobiotic and genotoxic agents, and in this process, the skin's cellular genome faces continuous stress due to direct exposure to these noxious factors. Accumulation of genetic stress results in genomic alterations leading to undesirable gene or protein alteration/expression in skin cells, which eventually causes the formation of non-melanoma skin cancers (NMSCs). Ultraviolet B (UVB) radiation from sun is the most prominent factor contributing to ∼5 million skin cancer cases (which are mostly NMSCs) in the United States (US) and western countries. UVB exposure causes aberrations in a range of biochemical and molecular pathways such as: thymine dimer formation, DNA damage, oxidative stress, inflammatory responses, altered cellular signaling, which ultimately contribute to the development of NMSCs. The focus of this review is to summarize the protective and preventive potential of silymarin and/or silibinin against UVB-induced NMSC in pre-clinical skin cancer studies. Over two decades of research has shown the strong potential of silibinin, a biologically active flavonolignan (crude form Silymarin) derived from milk thistle plant, against a wide range of cancers, including NMSCs. Silibinin protects against UVB-induced thymine dimer formation and in turn promotes DNA repair and/or initiates apoptosis in damaged cells via an increase in p53 levels. Additionally, silibinin has shown strong efficacy against NMSCs via its potential to target aberrant signaling pathways, and induction of anti-inflammatory responses. Overall, completed comprehensive studies suggest the potential use of silibinin to prevent and/or manage NMSCs in humans.

6.
Front Oncol ; 9: 1280, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824856

RESUMO

Cancer microenvironment is complex and consists of various immune cells. There is evidence for mast cell (MC) infiltration of tumors, but their role thereof is poorly understood. In this study, we explored the effects of mast cell and their mediators on the growth of hematological cancer cells. The affect is demonstrated using RBL-2H3 MCs, and YAC-1, EL4 and L1210 as hematological cancer cell lines. Direct contact with MCs or stimulation by their mediators caused growth inhibition of YAC-1 cells, growth enhancement of EL4 cells and no change in growth of L1210 cells. This effect was confirmed by cancer cell recovery, cell viability, mitochondrial health, and cell cycle analysis. MCs showed mediator release in direct contact with tumor cells. MC mediators' treatment to YAC-1 and EL4 yielded exactly opposite modulations of survival markers, Survivin and COX-2 and apoptosis markers, Caspase-3, Bcl-2, in the two cell lines. Histamine being an important MC mediator, effect of histamine on cell recovery, survival markers and expression of various histamine receptors and their modulation in cancer cells was studied. Again, YAC-1 and EL4 cells showed contrary histamine receptor expression modulation in response to MC mediators. Histamine receptor antagonist co-treatment with MC mediators to the cancer cells suggested a major involvement of H2 and H4 receptor in growth inhibition in YAC-1 cells, and contribution of H1, H2, and H4 receptors in cell growth enhancement in EL4 cells. L1210 showed changes in the histamine receptors' expression but no effect on treatment with receptor antagonists. It can be concluded that anti-cancerous action of MCs or their mediators may include direct growth inhibition, but their role may differ depending on the tumor.

7.
Front Pharmacol ; 10: 659, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333447

RESUMO

Rheumatoid arthritis (RA) is defined as a chronic autoimmune inflammatory disorder that causes damage to limb joints and progressive injuries to secondary organs. Medical practitioners prescribe Methotrexate (MTX) as standard care medicine for treating RA. However, the long-term application of MTX has shown to have adverse health-related effects. Divya Amvatari Ras (DAR), an Indian Ayurvedic herbo-mineral formulation, has been described in ancient texts to provide relief from RA inflammation associated distress. Therefore, in the present study, we explored the biocompatibility, anti-inflammatory, and anti-arthritic efficacy of DAR using in vivo and in vitro disease models. Using carrageenan (CA)-stimulated Wistar rat paw edema model, we showed a reduction in inflammation-induced paw edema at human equivalent dose of DAR. Anti-rheumatic efficacy of DAR was studied using collagen-antibody cocktail (C-Ab) Induced Arthritis (CAIA) mouse model. The onset of RA in the CAIA mice was determined using parameters such as the increase in arthritis score, and induction of disease associated lesions in the ankle and knee joints, and increase in mechanical and thermal hyperalgesia. Treatment of CAIA animals with a human equivalent dose of DAR significantly reversed the RA-associated pathogenesis. These effects were comparable with the standard of care RA drug, MTX. DAR acted at multiple levels of inflammation associated with RA to reduce progressive pathogenesis. Animal serum biochemistry showed DAR was capable of ameliorating RA induced increase in liver enzyme Alanine Aminotransferase (ALT) and pro-inflammatory cytokine interleukin 6 (IL-6). In the lipopolysaccharide stimulated THP-1 cells, DAR was found to inhibit the release of IL-6, IL-1ß, TNF-α, and upstream inflammatory gene regulatory protein, NFκB. The study endorsed the anti-arthritic and anti-inflammatory activity of the Indian Traditional herbo-mineral medicine, DAR. These results also confirm that DAR was highly biocompatible and would show minimal health-related side effects than those associated with standard of care MTX. Taken together, we show that the DAR could be utilized as a promising alternative or complementary therapy for treating rheumatoid arthritis.

8.
Sci Rep ; 9(1): 8025, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142786

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disorder that affects joints of hands and feet and introduces injury in secondary organs such as cardiac tissue. In the present study, we induced RA in male Balb/c mice (CAIA) using collagen-antibody cocktail (C-Ab) and lipopolysaccharide intraperitoneal injections. Induction of RA in the animals was detected through the loss of body weight, food, and water consumption, pedal edema, increased arthritis score of the paw and ankle, increase in radiological and histological lesion score of ankle and knee joints and enhanced pain perception in the C-Ab induced RA animals. Ashwashila is a herbo-mineral medicine from Indian Ayurvedic system. Human equivalent doses of Ashwashila (ASHW) and standard of care, Methotrexate were given to the CAIA animals for two weeks. ASHW treatment significantly reversed the effect of C-Ab with reduced pedal edema, arthritis score, radiological and histological lesion scores in ankle-joint, knee-joint and articular cartilage, reduced pain perception. These effects were comparable with the Methotrexate treatment. In human monocytic (THP-1) cells, ASHW was found to be biocompatible at in-vitro test doses. The anti-arthritis mechanism of action for ASHW was established through the suppression of pro-inflammatory cytokines such as IL-1ß, IL-6, TNF-α; and upstream regulator, NF-κB. Taken together, we show the pre-clinical efficacy of ASHW in reducing RA associated symptoms by controlling inflammation and suggest it as a potential therapeutic candidate for rheumatoid arthritis.


Assuntos
Antirreumáticos/administração & dosagem , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Minerais/administração & dosagem , Extratos Vegetais/administração & dosagem , Animais , Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Masculino , Ayurveda/métodos , Metotrexato/administração & dosagem , Camundongos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA