Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell ; 184(13): 3486-3501.e21, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34077751

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is a World Health Organization priority pathogen. CCHFV infections cause a highly lethal hemorrhagic fever for which specific treatments and vaccines are urgently needed. Here, we characterize the human immune response to natural CCHFV infection to identify potent neutralizing monoclonal antibodies (nAbs) targeting the viral glycoprotein. Competition experiments showed that these nAbs bind six distinct antigenic sites in the Gc subunit. These sites were further delineated through mutagenesis and mapped onto a prefusion model of Gc. Pairwise screening identified combinations of non-competing nAbs that afford synergistic neutralization. Further enhancements in neutralization breadth and potency were attained by physically linking variable domains of synergistic nAb pairs through bispecific antibody (bsAb) engineering. Although multiple nAbs protected mice from lethal CCHFV challenge in pre- or post-exposure prophylactic settings, only a single bsAb, DVD-121-801, afforded therapeutic protection. DVD-121-801 is a promising candidate suitable for clinical development as a CCHFV therapeutic.


Assuntos
Anticorpos Neutralizantes/imunologia , Febre Hemorrágica da Crimeia/imunologia , Sobreviventes , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Antígenos Virais/metabolismo , Fenômenos Biofísicos , Chlorocebus aethiops , Mapeamento de Epitopos , Epitopos/metabolismo , Feminino , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Febre Hemorrágica da Crimeia/prevenção & controle , Humanos , Imunoglobulina G/metabolismo , Masculino , Camundongos , Testes de Neutralização , Ligação Proteica , Engenharia de Proteínas , Proteínas Recombinantes/imunologia , Células Vero , Proteínas Virais/química
2.
J Virol ; 89(6): 3308-17, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25589639

RESUMO

UNLABELLED: Reactivation of memory B cells allows for a rapid and robust immune response upon challenge with the same antigen. Variant influenza virus strains generated through antigenic shift or drift are encountered multiple times over the lifetime of an individual. One might predict, then, that upon vaccination with the trivalent influenza vaccine across multiple years, the antibody response would become more and more dominant toward strains consistently present in the vaccine at the expense of more divergent strains. However, when we analyzed the vaccine-induced plasmablast, memory, and serological responses to the trivalent influenza vaccine between 2006 and 2013, we found that the B cell response was most robust against more divergent strains. Overall, the antibody response was highest when one or more strains contained in the vaccine varied from year to year. This suggests that in the broader immunological context of viral antigen exposure, the B cell response to variant influenza virus strains is not dictated by the composition of the memory B cell precursor pool. The outcome is instead a diversified B cell response. IMPORTANCE: Vaccine strategies are being designed to boost broadly reactive B cells present in the memory repertoire to provide universal protection to the influenza virus. It is important to understand how past exposure to influenza virus strains affects the response to subsequent immunizations. The viral epitopes targeted by B cells responding to the vaccine may be a direct reflection of the B cell memory specificities abundant in the preexisting immune repertoire, or other factors may influence the vaccine response. Here, we demonstrate that high preexisting serological antibody levels to a given influenza virus strain correlate with low production of antibody-secreting cells and memory B cells recognizing that strain upon revaccination. In contrast, introduction of antigenically novel strains generates a robust B cell response. Thus, both the preexisting memory B cell repertoire and serological antibody levels must be taken into consideration in predicting the quality of the B cell response to new prime-boost vaccine strategies.


Assuntos
Anticorpos Antivirais/sangue , Formação de Anticorpos , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Orthomyxoviridae/imunologia , Adulto , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Feminino , Humanos , Vacinas contra Influenza/administração & dosagem , Influenza Humana/sangue , Influenza Humana/virologia , Masculino , Pessoa de Meia-Idade , Orthomyxoviridae/fisiologia , Vacinação , Adulto Jovem
3.
bioRxiv ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38496658

RESUMO

Crimean-Congo hemorrhagic fever virus can cause lethal disease in humans yet there are no approved medical countermeasures. Viral glycoprotein GP38, unique to Nairoviridae, is a target of protective antibodies, but extensive mapping of the human antibody response to GP38 has not been previously performed. Here, we isolated 188 GP38-specific antibodies from human survivors of infection. Competition experiments showed that these antibodies bind across five distinct antigenic sites, encompassing eleven overlapping regions. Additionally, we reveal structures of GP38 bound with nine of these antibodies targeting different antigenic sites. Although GP38-specific antibodies were non-neutralizing, several antibodies were found to have protection equal to or better than murine antibody 13G8 in two highly stringent rodent models of infection. Together, these data expand our understanding regarding this important viral protein and inform the development of broadly effective CCHFV antibody therapeutics.

4.
Cell Rep ; 43(7): 114502, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39002130

RESUMO

Crimean-Congo hemorrhagic fever virus can cause lethal disease in humans yet there are no approved medical countermeasures. Viral glycoprotein GP38, exclusive to Nairoviridae, is a target of protective antibodies and is a key antigen in preclinical vaccine candidates. Here, we isolate 188 GP38-specific antibodies from human survivors of infection. Competition experiments show that these antibodies bind across 5 distinct antigenic sites, encompassing 11 overlapping regions. Additionally, we show structures of GP38 bound with 9 of these antibodies targeting different antigenic sites. Although these GP38-specific antibodies are non-neutralizing, several display protective efficacy equal to or better than murine antibody 13G8 in two highly stringent rodent models of infection. Together, these data expand our understanding regarding this important viral protein and may inform the development of broadly effective CCHFV antibody therapeutics.

5.
Antioxid Redox Signal ; 22(9): 785-96, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25557512

RESUMO

AIMS: Plants employ both basal and resistance gene (R gene)-mediated defenses in response to pathogens. Reactive oxygen species (ROS) are widely reported to play a central role in both basal and R gene-mediated defense; however, the nature of ROS has been less well established for basal defense. In addition, spatial distribution of redox moieties and mechanisms of plant responses during basal defense are poorly understood. We investigated redox signaling in Arabidopsis thaliana in response to virulent bacterial pathogen, focusing on the role of the mitochondria in balancing energy demands against generation of physiologically relevant ROS. RESULTS: Positional cloning of an Arabidopsis lesion mimic mutant identified a polyprenyl transferase involved in the biosynthesis of Coenzyme Q10 (CoQ), which leads to novel insights into physiological ROS levels and their role in basal resistance. Gain- and loss-of-function studies identified Coenzyme Q10 redox state to be a key determinant of ROS levels. These Coenzyme Q10 redox state-mediated ROS levels had a direct bearing on both response against pathogen and ability to thrive in high oxidative stress environments. INNOVATION: We demonstrate that Coenzyme Q10 redox state generates an ROS threshold for a successful basal resistance response. Perturbation of the Coenzyme Q10 redox state has the potential to disrupt plant defense responses against bacterial pathogens. CONCLUSIONS: Coenzyme Q10 redox state is a key regulator of Arabidopsis basal resistance against bacterial pathogens.


Assuntos
Arabidopsis/fisiologia , Proteínas de Plantas/metabolismo , Pseudomonas syringae/patogenicidade , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico , Arabidopsis/imunologia , Arabidopsis/microbiologia , Oxirredução , Proteínas de Plantas/genética , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo
6.
Sci Transl Med ; 7(316): 316ra192, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26631631

RESUMO

Generating a broadly protective influenza vaccine is critical to global health. Understanding how immune memory influences influenza immunity is central to this goal. We undertook an in-depth study of the B cell response to the pandemic 2009 H1N1 vaccine over consecutive years. Analysis of monoclonal antibodies generated from vaccine-induced plasmablasts demonstrated that individuals with low preexisting serological titers to the vaccinating strain generated a broadly reactive, hemagglutinin (HA) stalk-biased response. Higher preexisting serum antibody levels correlated with a strain-specific HA head-dominated response. We demonstrate that this HA head immunodominance encompasses poor accessibility of the HA stalk epitopes. Further, we show polyreactivity of HA stalk-reactive antibodies that could cause counterselection of these cells. Thus, preexisting memory B cells against HA head epitopes predominate, inhibiting a broadly protective response against the HA stalk upon revaccination with similar strains. Consideration of influenza exposure history is critical for new vaccine strategies designed to elicit broadly neutralizing antibodies.


Assuntos
Linfócitos B/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/virologia , Adulto , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Separação Celular , Cães , Epitopos/imunologia , Feminino , Humanos , Vírus da Influenza A Subtipo H1N1 , Leucócitos Mononucleares/citologia , Células Madin Darby de Rim Canino , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Filogenia , Ressonância de Plasmônio de Superfície
7.
PLoS One ; 10(5): e0125618, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25951191

RESUMO

Breakdown of B cell tolerance is a cardinal feature of systemic lupus erythematosus (SLE). Increased numbers of autoreactive mature naïve B cells have been described in SLE patients and autoantibodies have been shown to arise from autoreactive and non-autoreactive precursors. How these defects, in the regulation of B cell tolerance and selection, influence germinal center (GC) reactions that are directed towards foreign antigens has yet to be investigated. Here, we examined the characteristics of post-GC foreign antigen-specific B cells from SLE patients and healthy controls by analyzing monoclonal antibodies generated from plasmablasts induced specifically by influenza vaccination. We report that many of the SLE patients had anti-influenza antibodies with higher binding affinity and neutralization capacity than those from controls. Although overall frequencies of autoreactivity in the influenza-specific plasmablasts were similar for SLE patients and controls, the variable gene repertoire of influenza-specific plasmablasts from SLE patients was altered, with increased usage of JH6 and long heavy chain CDR3 segments. We found that high affinity anti-influenza antibodies generally characterize the plasmablast responses of SLE patients with low levels of autoreactivity; however, certain exceptions were noted. The high-avidity antibody responses in SLE patients may also be correlated with cytokines that are abnormally expressed in lupus. These findings provide insights into the effects of dysregulated immunity on the quality of antibody responses following influenza vaccination and further our understanding of the underlying abnormalities of lupus.


Assuntos
Anticorpos Monoclonais/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Orthomyxoviridae/imunologia , Afinidade de Anticorpos , Formação de Anticorpos , Estudos de Casos e Controles , Humanos , Vacinas contra Influenza/administração & dosagem
8.
J Exp Med ; 211(12): 2331-9, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25348152

RESUMO

Staphylococcus aureus bacterial infection commonly results in chronic or recurrent disease, suggesting that humoral memory responses are hampered. Understanding how S. aureus subverts the immune response is critical for the rescue of host natural humoral immunity and vaccine development. S. aureus expresses the virulence factor Protein A (SpA) on all clinical isolates, and SpA has been shown in mice to expand and ablate variable heavy 3 (VH3) idiotype B cells. The effects of SpA during natural infection, however, have not been addressed. Acutely activated B cells, or plasmablasts (PBs), were analyzed to dissect the ongoing immune response to infection through the production of monoclonal antibodies (mAbs). The B cells that were activated by infection had a highly limited response. When screened against multiple S. aureus antigens, only high-affinity binding to SpA was observed. Consistently, PBs underwent affinity maturation, but their B cell receptors demonstrated significant bias toward the VH3 idiotype. These data suggest that the superantigenic activity of SpA leads to immunodominance, limiting host responses to other S. aureus virulence factors that would be necessary for protection and memory formation.


Assuntos
Evasão da Resposta Imune/imunologia , Infecções Estafilocócicas/imunologia , Proteína Estafilocócica A/imunologia , Staphylococcus aureus/imunologia , Adulto , Idoso , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Citometria de Fluxo , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Células HEK293 , Interações Hospedeiro-Patógeno/imunologia , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/imunologia , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Plasmócitos/imunologia , Plasmócitos/metabolismo , Células Precursoras de Linfócitos B/imunologia , Células Precursoras de Linfócitos B/metabolismo , Análise de Sequência de DNA , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Staphylococcus aureus/fisiologia , Fatores de Virulência/imunologia , Adulto Jovem
9.
Front Immunol ; 2: 77, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22566866

RESUMO

The major goal in vaccination is establishment of long-term, prophylactic humoral memory to a pathogen. Two major components to long-lived humoral memory are plasma cells for the production of specific immunoglobulin and memory B cells that survey for their specific antigen in the periphery for later affinity maturation, proliferation, and differentiation. The study of human B cell memory has been aided by the discovery of a general marker for B cell memory, expression of CD27; however, new data suggests the existence of CD27⁻ memory B cells as well. These recently described non-canonical memory populations have increasingly pointed to the heterogeneity of the memory compartment. The novel B memory subsets in humans appear to have unique origins, localization, and functions compared to what was considered to be a "classical" memory B cell. In this article, we review the known B cell memory subsets, the establishment of B cell memory in vaccination and infection, and how understanding these newly described subsets can inform vaccine design and disease treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA