Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Environ Res ; 220: 115137, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563977

RESUMO

Plastic biodegradation by insects has made significant progress, opening up new avenues for the treatment of plastic waste. Wax moth larvae, for example, have attracted the attention of the scientific community because they are known to chew, ingest, and biodegrade natural polymer bee waxes. Despite this, we know very little about how these insects perform on manufactured plastics or how manufactured plastics affect insect metabolism. As a result, we studied the metabolism of greater wax moths (Galleria mellonella) fed on molasses-supplemented polylactic acid plastic (PLA) blocks. An analysis of the central carbon metabolism (CCM) metabolites was performed using liquid chromatography triple quadrupole mass spectrometry (LC-QQQ-MS), while an analysis of untargeted metabolites and lipids was conducted using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS). In total, 169 targeted CCM metabolites, 222 untargeted polar metabolites, and 196 untargeted nonpolar lipids were identified within the insect samples. In contrast, compared to control larvae, PLA-fed larvae displayed significantly different levels of 97 CCM metabolites, 75 polar metabolites, and 57 lipids. Purine and pyrimidine metabolisms were affected by PLA feeding, as well as amino acid metabolism, carbohydrates, cofactors, vitamins, and related metabolisms. Additionally, PLA exposure disrupted insect energy metabolism and oxidative stress, among other metabolic disturbances. The larvae fed PLA have lower levels of several lipids, suggesting a reduction in lipid reserves, and ceramide levels are likely to have changed due to apoptosis and inflammation. The study indicates that G. mellonella larvae could ingest PLA but this process causes some metabolic stress for the host. Future studies of the molecular pathways of this biodegradation process might help to provide strategies for stress reduction that would speed up insect digestion of plastic.


Assuntos
Mariposas , Animais , Abelhas , Larva/metabolismo , Mariposas/metabolismo , Poliésteres , Plásticos , Estresse Oxidativo , Ceras/metabolismo , Lipídeos
2.
G3 (Bethesda) ; 14(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38564250

RESUMO

Galleria mellonella is a pest of honeybees in many countries because its larvae feed on beeswax. However, G. mellonella larvae can also eat various plastics, including polyethylene, polystyrene, and polypropylene, and therefore, the species is garnering increasing interest as a tool for plastic biodegradation research. This paper presents an improved genome (99.3% completed lepidoptera_odb10 BUSCO; genome mode) for G. mellonella. This 472 Mb genome is in 221 contigs with an N50 of 6.4 Mb and contains 13,604 protein-coding genes. Genes that code for known and putative polyethylene-degrading enzymes and their similarity to proteins found in other Lepidoptera are highlighted. An analysis of secretory proteins more likely to be involved in the plastic catabolic process has also been carried out.


Assuntos
Genoma de Inseto , Mariposas , Animais , Mariposas/genética , Plásticos , Anotação de Sequência Molecular , Biodegradação Ambiental , Genômica/métodos , Padrões de Referência , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
3.
ACS Omega ; 8(8): 7319-7330, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36872973

RESUMO

The larvae of the black soldier fly (BSF), Hermetia illucens (Diptera: Stratiomyidae), have demonstrated the ability to efficiently bioconvert organic waste into a sustainable source of food and feed, but fundamental biology remains to be discovered to exploit their full biodegradative potential. Herein, LC-MS/MS was used to assess the efficiency of eight differing extraction protocols to build foundational knowledge regarding the proteome landscape of both the BSF larvae body and gut. Each protocol yielded complementary information to improve BSF proteome coverage. Protocol 8 (liquid nitrogen, defatting, and urea/thiourea/chaps) was better than all other protocols for the protein extraction from larvae gut samples, and the exclusion of defatting steps yielded the highest number of proteins for the larval body samples. Protocol-specific functional annotation using protein level information has shown that the selection of extraction buffer can affect protein detection and their associated functional classes within the measured BSF larval gut proteome. A targeted LC-MRM-MS experiment was performed on the selected enzyme subclasses to assess the influence of protocol composition using peptide abundance measurements. Metaproteome analysis of the BSF larvae gut has uncovered the prevalence of two bacterial phyla: actinobacteria and proteobacteria. We envisage that using complementary extraction protocols and investigating the proteome from the BSF body and gut separately will expand the fundamental knowledge of the BSF proteome and thereby provide translational opportunities for future research to enhance their efficiency for waste degradation and contribution to the circular economy.

4.
Sci Total Environ ; 831: 154840, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35367264

RESUMO

Insects used to treat organic waste streams and produce valuable protein products are increasingly exposed to plastic contaminated source material assimilating plastic carbon into organic biomass, which is pervasive and hazardous to organisms. Our understanding of this increased insect-plastic interaction remains limited and needs urgent scientific attention if plastic biodegradation and production rates of quality protein are to be improved. Herein, we investigated the biochemical impact of various plastics using three insect models. Black Soldier Fly (BSF), Mealworm (MW), and Wax Moth (WM) larva were each exposed to a plastic substrate (PET, PE, PS, Expanded PE, PP, and PLA) as the primary carbon source for five days to explore any positive metabolic benefits in terms of insect performance and plastic degradation potential. Central carbon metabolism (CCM) metabolites were analyzed via a targeted tMRM liquid chromatography triple quadrupole mass spectrometry (LC-QqQ-MS) method. Unique expressed pathways were observed for each insect model. When reared on PET, BSF larvae were found to have an elevated pyrimidine metabolism, while the purine metabolism pathway was strongly expressed on other plastics. BSF also exhibited a downregulated Vitamin B6 metabolism across all plastics, indicating a likely gut-symbiont breakdown. The MW and WM model insects were metabolically more active on PLA and expanded foam plastics. Further, WM exhibited an elevation in Vitamin B6 metabolism. This data suggests a positive insect-specific interaction towards certain plastic types that warrants further investigation. It is anticipated that through deeper insight into the metabolic impact and benefits afforded from certain plastics, an insect biotransformation pipeline can be established that links fit-for-purpose insect models to individual plastic types that address our growing plastic waste issue.


Assuntos
Dípteros , Mariposas , Tenebrio , Animais , Carbono/metabolismo , Dípteros/metabolismo , Insetos , Larva/metabolismo , Plásticos/metabolismo , Poliésteres/metabolismo , Vitamina B 6/metabolismo
5.
Insects ; 12(7)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203157

RESUMO

The brown marmorated stink bug Halyomorphahalys (Stål) (Hemiptera: Pentatomidae) is native to Northeast Asia, but has become a serious invasive species in North America and Europe, causing major damage to crops. While it has not established itself in Australia, it has been intercepted at the border several times, indicating that future incursions and establishment are a case of when, not if. Biological control is one of the few control options for this species and will be important for managing H.halys should it become established in Australia. Prioritizing species that could be used as biological control agents would ensure Australia is prepared. This study summarizes the literature on natural enemies of H. halys in its native and invaded ranges and prioritizes potential biological control agents of H.halys that could be used in Australia. Two egg parasitoid species were identified: Trissolcusjaponicus (Ashmead) and Trissolcusmitsukurii (Ashmead) (Hymenoptera: Scelionidae). Future efforts to develop biological control should focus on T. mitsukurii, as it is already present in Australia. However, little is known about this species and further work is required to: (1) assess its potential effectiveness in parasitizing H. halys, (2) determine its current distribution and (3) host range in Australia.

6.
J Agric Food Chem ; 69(50): 15076-15083, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34883012

RESUMO

An increasing world population, rising affluence, urbanization, and changing eating habits are all contributing to the diversification of protein production. Protein is a building block of life and is an essential part of a healthy diet, providing amino acids for growth and repair. The challenges and opportunities for production of protein-rich foods from animals (meat, dairy, and aquaculture), plant-based sources (pulses), and emerging protein sources (insects, yeast, and microalgae) are discussed against the backdrop of palatability, nutrition, and sustainability.


Assuntos
Carne , Microalgas , Aminoácidos , Animais , Aquicultura , Dieta , Dieta Saudável
7.
Plants (Basel) ; 6(4)2017 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-28946657

RESUMO

Cotton, Gossypium hirsutum L., is a plant fibre of significant economic importance, with seeds providing an additional source of protein in human and animal nutrition. Flavonoids play a vital role in maintaining plant health and function and much research has investigated the role of flavonoids in plant defence and plant vigour and the influence these have on cotton production. As part of ongoing research into host plant/invertebrate pest interactions, we investigated the flavonoid profile of cotton reported in published, peer-reviewed literature. Here we report 52 flavonoids representing seven classes and their reported distribution within the cotton plant. We briefly discuss the historical research of flavonoids in cotton production and propose research areas that warrant further investigation.

8.
Pest Manag Sci ; 73(3): 485-492, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27753247

RESUMO

Helicoverpa armigera is a major pest of agriculture, horticulture and floriculture throughout the Old World and recently invaded parts of the New World. We overview of the evolution in thinking about the application of area-wide approaches to assist with its control by the Australian Cotton Industry to highlight important lessons and future challenges to achieving the same in the New World. An over-reliance of broad-spectrum insecticides led to Helicoverpa spp. in Australian cotton rapidly became resistant to DDT, synthetic pyrethroids, organophosphates, carbamates and endosulfan. Voluntary strategies were developed to slow the development of insecticide resistance, which included rotating chemistries and basing spray decisions on thresholds. Despite adoption of these practices, insecticide resistance continued to develop until the introduction of genetically modified cotton provided a platform for augmenting Integrated Pest Management in the Australian cotton industry. Compliance with mandatory resistance management plans for Bt cotton necessitated a shift from pest control at the level of individual fields or farms towards a coordinated area-wide landscape approach. Our take-home message for control of H. armigera is that resistance management is essential in genetically modified crops and must be season long and area-wide to be effective. © 2016 Society of Chemical Industry.


Assuntos
Gossypium/genética , Controle de Insetos , Mariposas , Plantas Geneticamente Modificadas/genética , Animais , Austrália , Geografia , Resistência a Inseticidas , Controle Biológico de Vetores
9.
PLoS One ; 12(1): e0169167, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28046073

RESUMO

Transgenic crops that express insecticide genes from Bacillus thuringiensis (Bt) are used worldwide against moth and beetle pests. Because these engineered plants can kill over 95% of susceptible larvae, they can rapidly select for resistance. Here, we use a model for a pyramid two-toxin Bt crop to explore the consequences of spatio-temporal variation in the area of Bt crop and non-Bt refuge habitat. We show that variability over time in the proportion of suitable non-Bt breeding habitat, Q, or in the total area of Bt and suitable non-Bt habitat, K, can increase the overall rate of resistance evolution by causing short-term surges of intense selection. These surges can be exacerbated when temporal variation in Q and/or K cause high larval densities in refuges that increase density-dependent mortality; this will give resistant larvae in Bt fields a relative advantage over susceptible larvae that largely depend on refuges. We address the effects of spatio-temporal variation in a management setting for two bollworm pests of cotton, Helicoverpa armigera and H. punctigera, and field data on landscape crop distributions from Australia. Even a small proportion of Bt fields available to egg-laying females when refuges are sparse may result in high exposure to Bt for just a single generation per year and cause a surge in selection. Therefore, rapid resistance evolution can occur when Bt crops are rare rather than common in the landscape. These results highlight the need to understand spatio-temporal fluctuations in the landscape composition of Bt crops and non-Bt habitats in order to design effective resistance management strategies.


Assuntos
Agricultura/métodos , Bacillus thuringiensis , Evolução Biológica , Gossypium , Resistência a Inseticidas/genética , Mariposas/genética , Animais , Toxinas Bacterianas/genética , Produtos Agrícolas/genética , Ecossistema , Feminino , Gossypium/genética , Larva , Masculino , Plantas Geneticamente Modificadas , Queensland , Análise Espaço-Temporal
10.
Springerplus ; 4: 125, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25815247

RESUMO

BACKGROUND: Pigeonpea is ranked as the sixth largest grain legume produced by volume and as such is a major global food crop for livestock and human consumption. We show that pigeonpea contains a number of flavonoids and report their distribution and concentration within different parts of the plant. FINDINGS: There are a total of 27 flavonoids reported in the literature representing seven flavonoid classes. We found no published evidence of flavanols (catechins/flavan-3-ols) or aurones reported from pigeonpea, nor any study of the flavonoids from pigeonpea flowers. CONCLUSIONS: Despite over 40 years of research in to various aspects of pigeonpea we identified research gaps related to the phytochemical properties of pigeonpea. We explain how addressing these gaps could help to realise the full potential of pigeonpea in agricultural production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA