Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38255562

RESUMO

Sn-Ni alloy matrix coatings co-deposited with TiO2 nanoparticles (Evonik P25) were produced utilizing direct (DC) and pulse electrodeposition (PC) from a tin-nickel chloride-fluoride electrolyte with a loading of TiO2 nanoparticles equal to 20 g/L. The structural and morphological characteristics of the resultant composite coatings were correlated with the compositional modifications that occurred within the alloy matrix and expressed via a) TiO2 co-deposition rate and b) composition of the matrix; this was due to the application of different current types (DC or PC electrodeposition), and different current density values. The results demonstrated that under DC electrodeposition, the current density exhibited a more significant impact on the composition of the alloy matrix than on the incorporation rate of the TiO2 nanoparticles. Additionally, PC electrodeposition favored the incorporation rate of TiO2 nanoparticles only when applying a low peak current density (Jp = 1 Adm-2). All of the composite coatings exhibited the characteristic cauliflower-like structure, and were characterized as nano-crystalline. The composites' surface roughness demonstrated a significant influence from the TiO2 incorporation rate. However, in terms of microhardness, higher co-deposition rates of embedded TiO2 nanoparticles within the alloy matrix were associated with decreased microhardness values. The best wear performance was achieved for the composite produced utilizing DC electrodeposition at J = 1 Adm-2, which also demonstrated the best photocatalytic behavior under UV irradiation. The corrosion study of the composite coatings revealed that they exhibit passivation, even at elevated anodic potentials.

2.
Nanomaterials (Basel) ; 14(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38607176

RESUMO

Polyaniline (PANI) constitutes a very propitious conductive polymer utilized in several biomedical, as well as environmental applications, including tissue engineering, catalysis, and photocatalysis, due to its unique properties. In this study, nano-PANI/N-TiO2 and nano-PANI/Ag-TiO2 photocatalytic composites were fabricated via aniline's oxidative polymerization, while the Ag-and N-chemically modified TiO2 nanopowders were synthesized through the sol-gel approach. All produced materials were fully characterized. Through micro-Raman and FT-IR analysis, the co-existence of PANI and chemically modified TiO2 particles was confirmed, while via XRD analysis the composites' average crystallite size was determined as ≈20 nm. The semi-crystal structure of polyaniline exhibits higher photocatalytic efficiency compared to that of other less crystalline forms. The spherical-shaped developed materials are innovative, stable (zeta potential in the range from -26 to -37 mV), and cost-effective, characterized by enhanced photocatalytic efficiency under visible light (energy band gaps ≈ 2 eV), and synthesized with relatively simple methods, with the possibility of recycling and reusing them in potential future applications in industry, in wastewater treatment as well as in biomedicine. Thus, the PANI-encapsulated Ag and N chemically modified TiO2 nanocomposites exhibit high degradation efficiency towards Rhodamine B dye upon visible-light irradiation, presenting simultaneously high biocompatibility in different normal cell lines.

3.
Nanomaterials (Basel) ; 14(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38470728

RESUMO

The wide array of structures and characteristics found in ZnO-based nanostructures offers them a versatile range of uses. Over the past decade, significant attention has been drawn to the possible applications of these materials in the biomedical field, owing to their distinctive electronic, optical, catalytic, and antimicrobial attributes, alongside their exceptional biocompatibility and surface chemistry. With environmental degradation and an aging population contributing to escalating healthcare needs and costs, particularly in developing nations, there's a growing demand for more effective and affordable biomedical devices with innovative functionalities. This review delves into particular essential facets of different synthetic approaches (chemical and green) that contribute to the production of effective multifunctional nano-ZnO particles for biomedical applications. Outlining the conjugation of ZnO nanoparticles highlights the enhancement of biomedical capacity while lowering toxicity. Additionally, recent progress in the study of ZnO-based nano-biomaterials tailored for biomedical purposes is explored, including biosensing, bioimaging, tissue regeneration, drug delivery, as well as vaccines and immunotherapy. The final section focuses on nano-ZnO particles' toxicity mechanism with special emphasis to their neurotoxic potential, as well as the primary toxicity pathways, providing an overall review of the up-to-date development and future perspectives of nano-ZnO particles in the biomedicine field.

4.
Gels ; 9(11)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37998946

RESUMO

The generation of 3D structures comprises three interlinked phases: material development, the printing process, and post-printing treatment. Numerous factors control all three phases, making the optimization of the entire process a challenging task. Until now, the state of the art has mainly focused on optimizing material processability and calibration of the printing process. However, after the successful Direct Ink Writing (DIW) of a hydrogel scaffold, the post-printing stage holds equal importance, as this allows for the treatment of the structure to ensure the preservation of its structural integrity for a duration that is sufficient to enable successful cell attachment and proliferation before undergoing degradation. Despite this stage's pivotal role, there is a lack of extensive literature covering its optimization. By studying the crosslinking factors and leveling the post-treatment settings of alginate-gelatin hydrogel, this study proposes a method to enhance scaffolds' degradation without compromising the targeted swelling behavior. It introduces an experimental design implementing the Response Surface Methodology (RSM) Design of Experiments (DoE), which elucidated the key parameters influencing scaffold degradation and swelling, and established an alginate ratio of 8% and being immersed for 15 min in 0.248 M CaCl2 as the optimal level configuration that generates a solution of 0.964 desirability, reaching a degradation time of 19.654 days and the swelling ratio of 50.00%.

5.
Nanomaterials (Basel) ; 13(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37570542

RESUMO

Over the last ten years, there has been a growing interest in metal-organic frameworks (MOFs), which are a unique category of porous materials that combine organic and inorganic components. MOFs have garnered significant attention due to their highly favorable characteristics, such as environmentally friendly nature, enhanced surface area and pore volume, hierarchical arrangements, and adjustable properties, as well as their versatile applications in fields such as chemical engineering, materials science, and the environmental and biomedical sectors. This article centers on examining the advancements in using MOFs for environmental remediation purposes. Additionally, it discusses the latest developments in employing MOFs as potential tools for disease diagnosis and drug delivery across various ailments, including cancer, diabetes, neurological disorders, and ocular diseases. Firstly, a concise overview of MOF evolution and the synthetic techniques employed for creating MOFs are provided, presenting their advantages and limitations. Subsequently, the challenges, potential avenues, and perspectives for future advancements in the utilization of MOFs in the respective application domains are addressed. Lastly, a comprehensive comparison of the materials presently employed in these applications is conducted.

6.
Membranes (Basel) ; 13(7)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37504993

RESUMO

The adhesion enhancement of a graphene oxide (GO) layer on porous ceramic substrates is a crucial step towards developing a high-performance membrane for many applications. In this work, we have achieved the chemical anchoring of GO layers on custom-made macroporous disks, fabricated in the lab by pressing α-Al2O3 powder. To this end, three different linkers, polydopamine (PDA), 3-Glycidoxypropyltrimethoxysilane (GPTMS) and (3-Aminopropyl) triethoxysilane (APTMS), were elaborated for their capacity to tightly bind the GO laminate on the ceramic membrane surface. The same procedure was replicated on cylindrical porous commercial ZrO2 substrates because of their potentiality for applications on a large scale. The gas permeance properties of the membranes were studied using helium at 25 °C as a probe molecule and further scrutinized in conjunction with water permeance results. Measurements with helium at 25 °C were chosen to avoid gas adsorption and surface diffusion mechanisms. This approach allowed us to draw conclusions on the deposition morphology of the GO sheets on the ceramic support, the mode of chemical bonding with the linker and the stability of the deposited GO laminate. Specifically, considering that He permeance is mostly affected by the pore structural characteristics, an estimation was initially made of the relative change in the pore size of the developed membranes compared to the bare substrate. This was achieved by interpreting the results via the Knudsen equation, which describes the gas permeance as being analogous to the third power of the pore radius. Subsequently, the calculated relative change in the pore size was inserted into the Hagen-Poiseuille equation to predict the respective water permeance ratio of the GO membranes to the bare substrate. The reason that the experimental water permeance values may deviate from the predicted ones is related to the different surface chemistry, i.e., the hydrophilicity or hydrophobicity that the composite membranes acquire after the chemical modification. Various characterization techniques were applied to study the morphological and physicochemical properties of the materials, like FESEM, XRD, DLS and Contact Angle.

7.
Antioxidants (Basel) ; 12(1)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36671032

RESUMO

The contemporary lifestyle of the last decade has undeniably caused a tremendous increase in oxidative-stress-inducing environmental sources. This phenomenon is not only connected with the rise of ROS levels in multiple tissues but is also associated with the induction of senescence in different cell types. Several signaling pathways that are associated with the reduction in ROS levels and the regulation of the cell cycle are being activated, so that the organism can battle deleterious effects. Within this context, autophagy plays a significant role. Through autophagy, cells can maintain their homeostasis, as if it were a self-degradation process, which removes the "wounded" molecules from the cells and uses their materials as a substrate for the creation of new useful cell particles. However, the role of autophagy in senescence has both a "dark" and a "bright" side. This review is an attempt to reveal the mechanistic aspects of this dual role. Nanomedicine can play a significant role, providing materials that are able to act by either preventing ROS generation or controllably inducing it, thus functioning as potential therapeutic agents regulating the activation or inhibition of autophagy.

8.
Nanomaterials (Basel) ; 13(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36616030

RESUMO

Semiconductor photocatalysts, particularly ZnO nanoparticles, were synthesized via the precipitation method using four different precursors (zinc acetate/zinc nitrate/zinc sulfate/zinc chloride) and compared, according to their optical, structural, photocatalytic, and anticancer properties. The materials were characterized via X-ray Diffraction method (XRD), micro-Raman, Fourier Transform Infrared Spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET), Dynamic Light Scattering (DLS), and Field Emission Scanning Electron Microscope (FESEM) analysis. Photocatalysis was conducted under UV and visible light irradiation, using Rhodamine B as the organic pollutant. It was observed that the highest photocatalysis efficiency was obtained by the nanoparticles synthesized from the zinc acetate used as precursor material. A cell-dependent anticancer efficiency of the tested ZnO nanoparticles was also observed, that was also attributed to the different precursors and the synthesis method, revealing that the nanoparticles that were synthesized from zinc acetate were more bioactive among the four tested precursors. Overall, the data revealed that both the enhanced photocatalytic and biological activity of ZnO nanoparticles derived from zinc acetate precursor could be attributed to the reduced crystalline size, increased surface area, as well as the observed hexagonal crystalline morphology.

9.
Membranes (Basel) ; 12(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36557088

RESUMO

Graphene oxide (GO) oligo-layered laminates were self-assembled on porous ceramic substrates via their simple dip-coating into aqueous GO dispersions. To augment the stability of the developed composite GO/ceramic membranes and control the morphology and stacking quality of the formed laminate, short-((3-glycidoxypropyl)trimethoxy silane-GLYMO, (3-aminopropyl)triethoxy silane-APTES), and long-chain (polydopamine-PDA) molecules were involved and examined as interfacial linkers. A comparative study was performed regarding the linker's capacity to enhance the interfacial adhesion between the ceramic surface and the GO deposit and affect the orientation and assemblage characteristics of the adjacent GO nanosheets that composed the formed oligo-layered laminates. Subsequently, by post-filtrating a GO/H2O suspension through the oligo-layered laminate membranes, the respective multi-layered ones have been developed, whereas ethylenediamine (EDA) was used in the suspension as an efficient molecular linker that strongly bonds and interlocks the GO nanosheets. The definition of the best linker and approach was conducted on macroporous α-alumina disks, due to the use of inexpensive raw materials and the ability to fabricate them in the lab with high reproducibility. To validate the concept at a larger scale, while investigating the effect of the porous substrate as regards its micrometer-scale roughness and surface chemistry, specific chemical modifications that yielded membranes with the best gas permeability/selectivity performance were replicated on a commercial single-channel monolith with a ZrO2 microfiltration layer. XRD, Raman, ATR, FESEM, and XPS analyses were conducted to study the structural, physicochemical, surface, and morphological properties of the GO/ceramic composite membranes, whereas permeance results of several gases at various temperatures and trans-membrane pressures were interpreted to shed light on the pore structural features. Concerning the short-chain linkers, the obtained results ascertain that GLYMO causes denser and more uniform assembly of GO nanosheets within the oligo-layered laminate. PDA had the same beneficial effect, as it is a macromolecule. Overall, this study shows that the development of gas-separating membranes, by just dipping the linker-modified substrate into the GO suspension, is not straightforward. The application of post-filtration contributed significantly to this target and the quality of the superficially deposited, thick GO laminate depended on this of the chemically attached oligo-layered one.

10.
Pharmaceutics ; 15(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36678763

RESUMO

The synthesis of titania-based composite materials with anticancer potential under visible-light irradiation is the aim of this study. In specific, titanium dioxide (TiO2) nanoparticles (NPs) chemically modified with silver were embedded in a stimuli-responsive microgel (a crosslinked interpenetrating network (IP) network that was synthesized by poly (N-Isopropylacrylamide) and linear chains of polyacrylic acid sodium salt, forming composite particles. The ultimate goal of this research, and for our future plans, is to develop a drug-delivery system that uses optical fibers that could efficiently photoactivate NPs, targeting cancer cells. The produced Ag-TiO2 NPs, the microgel and the composite materials were characterized through X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), micro-Raman spectroscopy, ultraviolet-visible spectroscopy (UV-Vis), dynamic light scattering (DLS) and transmission electron microscopy (TEM). Our results indicated that Ag-TiO2 NPs were successfully embedded within the thermoresponsive microgel. Either Ag-TiO2 NPs or the composite materials exhibited high photocatalytic degradation efficiency on the pollutant rhodamine B and significant anticancer potential under visible-light irradiation.

11.
Pharmacol Ther ; 222: 107795, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33358928

RESUMO

The multivariate condition of cancer disease has been approached in various ways, by the scientific community. Recent studies focus on individualized treatments, minimizing the undesirable consequences of the conventional methods, but the development of an alternative effective therapeutic scheme remains to be held. Nanomedicine could provide a solution, filling this gap, exploiting the unique properties of innovative nanostructured materials. Nanostructured titanium dioxide (TiO2) has a variety of applications of daily routine and of advanced technology. Due to its biocompatibility, it has also a great number of biomedical applications. It is now clear that photo-excited TiO2 nanoparticles, induce generation of pairs of electrons and holes which react with water and oxygen to yield reactive oxygen species (ROS) that have been proven to damage cancer cells, triggering controlled cellular processes. The aim of this review is to provide insights into the field of nanomedicine and particularly into the wide context of TiO2-NP-mediated anticancer effect, shedding light on the achievements of nanotechnology and proposing this nanostructured material as a promising anticancer photosensitizer.


Assuntos
Antineoplásicos , Neoplasias , Fármacos Fotossensibilizantes , Titânio , Antineoplásicos/farmacologia , Humanos , Nanomedicina , Nanoestruturas , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Espécies Reativas de Oxigênio , Titânio/farmacologia
12.
Cancer Genomics Proteomics ; 18(3 Suppl): 425-439, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33994365

RESUMO

BACKGROUND/AIM: Nanomedicine is a promising scientific field that exploits the unique properties of innovative nanomaterials, providing alternative solutions in diagnostics, prevention and therapeutics. Titanium dioxide nanoparticles (TiO2 NPs) have a great spectrum of photocatalytic antibacterial and anticancer applications. The chemical modification of TiO2 optimizes its bioactive performance. The aim of this study was the development of silver modified NPs (Ag/TiO2 NPs) with anticancer potential. MATERIALS AND METHODS: Ag/TiO2 NPs were prepared through the sol-gel method, were fully characterized and were tested on cultured breast cancer epithelial cells (MCF-7 and MDA-MB-231). The MTT colorimetric assay was used to estimate cellular viability. Western blot analysis of protein expression along with a DNA-laddering assay were employed for apoptosis detection. RESULTS AND CONCLUSION: We show that photo-activated Ag/TiO2 NPs exhibited significant cytotoxicity on the highly malignant MDA-MB-231 cancer cells, inducing apoptosis, while MCF-7 cells that are characterized by low invasive properties were unaffected under the same conditions.


Assuntos
Nanomedicina/métodos , Nanoestruturas/química , Neoplasias/induzido quimicamente , Prata/química , Titânio/uso terapêutico , Humanos , Titânio/farmacologia
13.
Materials (Basel) ; 12(16)2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31416238

RESUMO

In this study, the synthesis of smart, polymerically embedded titanium dioxide (TiO2) nanoparticles aimed to exhibit photo-induced anticancer properties under visible light irradiation is investigated. The TiO2 nanoparticles were prepared by utilizing the sol gel method with different dopants, including nitrogen (N-doped), iron (Fe-doped), and nitrogen and iron (Fe,N-doped). The dopants were embedded in an interpenetrating (IP) network microgel synthesized by stimuli responsive poly (N-Isopropylacrylamide-co-polyacrylicacid)-pNipam-co-PAA forming composite particles. All the types of produced particles were characterized by X-ray powder diffraction, micro-Raman, Fourier-transform infrared, X-ray photoelectron, ultra-violet-visible spectroscopy, Field Emission Scanning Electron, Transmission Electron microscopy, and Dynamic Light Scattering techniques. The experimental findings indicate that the doped TiO2 nanoparticles were successfully embedded in the microgel. The N-doped TiO2 nano-powders and composite particles exhibit the best photocatalytic degradation of the pollutant methylene blue under visible light irradiation. Similarly, the highly malignant MDA-MB-231 breast cancer epithelial cells were susceptible to the inhibition of cell proliferation at visible light, especially in the presence of N-doped powders and composites, compared to the non-metastatic MCF-7 cells, which were not affected.

14.
Int J Nanomedicine ; 9: 3219-30, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25061298

RESUMO

PURPOSE: The use of nanoparticles has seen exponential growth in the area of health care, due to the unique physicochemical properties of nanomaterials that make them desirable for medical applications. The aim of this study was to examine the effects of crystal phase-nanostructured titanium dioxide particles on bioactivity/cytotoxicity in breast cancer epithelial cells. MATERIALS AND METHODS: Cultured Michigan Cancer Foundation (MCF)-7 and human breast adenocarcinoma (MDA-MB-468) breast cancer epithelial cells were exposed to ultraviolet A light (wavelength 350 nm) for 20 minutes in the presence of aqueous dispersions of two different nanostructured titanium dioxide (TiO2) crystal phases: anatase and an anatase-rutile mixture. Detailed characterization of each titanium dispersion was performed by dynamic light scattering. A 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) colorimetric assay was employed to estimate the percentage of viable cells after each treatment. Western blot analysis of protein expression and characterization, as well as a deoxyribonucleic acid (DNA)-laddering assay, were used to detect cell apoptosis. RESULTS: Our results documented that 100% anatase TiO2 nanoparticles (110-130 nm) exhibited significantly higher cytotoxicity in the highly malignant MDA-MB-468 cancer cells than anatase- rutile mixtures (75%/25%) with the same size. On the contrary, MCF-7 cells (characterized by low invasive properties) were not considerably affected. Exposure of MDA-MB-468 cells to pure anatase nanoparticles or anatase-rutile mixtures for 48 hours resulted in increased proapoptotic Bax expression, caspase-mediated poly(adenosine diphosphate ribose) polymerase (PARP) cleavage, DNA fragmentation, and programmed cell death/apoptosis. CONCLUSION: The obtained results indicated that pure anatase TiO2 nanoparticles exhibit superior cytotoxic effects compared to anatase-rutile mixtures of the same size. The molecular mechanism of TiO2 nanoparticle cytotoxicity involved increased Bax expression and caspase-mediated PARP inactivation, thus resulting in DNA fragmentation and cell apoptosis.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Neoplasias da Mama/metabolismo , Nanoestruturas/química , Titânio/farmacologia , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Proteínas Proto-Oncogênicas c-bcl-2/análise , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Titânio/química , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA