Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612505

RESUMO

SARS-CoV-2 has accumulated many mutations since its emergence in late 2019. Nucleotide substitutions leading to amino acid replacements constitute the primary material for natural selection. Insertions, deletions, and substitutions appear to be critical for coronavirus's macro- and microevolution. Understanding the molecular mechanisms of mutations in the mutational hotspots (positions, loci with recurrent mutations, and nucleotide context) is important for disentangling roles of mutagenesis and selection. In the SARS-CoV-2 genome, deletions and insertions are frequently associated with repetitive sequences, whereas C>U substitutions are often surrounded by nucleotides resembling the APOBEC mutable motifs. We describe various approaches to mutation spectra analyses, including the context features of RNAs that are likely to be involved in the generation of recurrent mutations. We also discuss the interplay between mutations and natural selection as a complex evolutionary trend. The substantial variability and complexity of pipelines for the reconstruction of mutations and the huge number of genomic sequences are major problems for the analyses of mutations in the SARS-CoV-2 genome. As a solution, we advocate for the development of a centralized database of predicted mutations, which needs to be updated on a regular basis.


Assuntos
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2/genética , Mutagênese , Mutação , Nucleotídeos
2.
Int J Mol Sci ; 25(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255897

RESUMO

The discovery of the CRISPR/Cas9 microbial adaptive immune system has revolutionized the field of genetics, by greatly enhancing the capacity for genome editing. CRISPR/Cas9-based editing starts with DNA breaks (or other lesions) predominantly at target sites and, unfortunately, at off-target genome sites. DNA repair systems differing in accuracy participate in establishing desired genetic changes but also introduce unwanted mutations, that may lead to hereditary, oncological, and other diseases. New approaches to alleviate the risks associated with genome editing include attenuating the off-target activity of editing complex through the use of modified forms of Cas9 nuclease and single guide RNA (sgRNA), improving delivery methods for sgRNA/Cas9 complex, and directing DNA lesions caused by the sgRNA/Cas9 to non-mutagenic repair pathways. Here, we have described CRISPR/Cas9 as a new powerful mutagenic factor, discussed its mutagenic properties, and reviewed factors influencing the mutagenic activity of CRISPR/Cas9.


Assuntos
Sistemas CRISPR-Cas , Mutagênicos , Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas , Mutagênese/genética , Mutação
3.
Int J Mol Sci ; 25(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38791307

RESUMO

Multiple myeloma (MM) is the second most common hematological malignancy, which remains incurable despite recent advances in treatment strategies. Like other forms of cancer, MM is characterized by genomic instability, caused by defects in DNA repair. Along with mutations in DNA repair genes and genotoxic drugs used to treat MM, non-canonical secondary DNA structures (four-stranded G-quadruplex structures) can affect accumulation of somatic mutations and chromosomal abnormalities in the tumor cells of MM patients. Here, we tested the hypothesis that G-quadruplex structures may influence the distribution of somatic mutations in the tumor cells of MM patients. We sequenced exomes of normal and tumor cells of 11 MM patients and analyzed the data for the presence of G4 context around points of somatic mutations. To identify molecular mechanisms that could affect mutational profile of tumors, we also analyzed mutational signatures in tumor cells as well as germline mutations for the presence of specific SNPs in DNA repair genes or in genes regulating G-quadruplex unwinding. In several patients, we found that sites of somatic mutations are frequently located in regions with G4 context. This pattern correlated with specific germline variants found in these patients. We discuss the possible implications of these variants for mutation accumulation and specificity in MM and propose that the extent of G4 context enrichment around somatic mutation sites may be a novel metric characterizing mutational processes in tumors.


Assuntos
Quadruplex G , Mieloma Múltiplo , Mutação , Humanos , Mieloma Múltiplo/genética , Polimorfismo de Nucleotídeo Único , Reparo do DNA/genética , Instabilidade Genômica
4.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175502

RESUMO

Baker's yeast, S. cerevisiae, is an excellent model organism exploited for molecular genetic studies of the mechanisms of genome stability in eukaryotes. Genetic peculiarities of commonly used yeast strains impact the processes of DNA replication, repair, and recombination (RRR). We compared the genomic DNA sequence variation of the five strains that are intensively used for RRR studies. We used yeast next-generation sequencing data to detect the extent and significance of variation in 183 RRR genes. We present a detailed analysis of the differences that were found even in closely related strains. Polymorphisms of common yeast strains should be considered when interpreting the outcomes of genome stability studies, especially in cases of discrepancies between laboratories describing the same phenomena.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Polimorfismo Genético , Proteínas de Saccharomyces cerevisiae/metabolismo , Instabilidade Genômica , DNA/metabolismo
5.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37569542

RESUMO

Spontaneous or induced DNA lesions can result in stable gene mutations and chromosomal aberrations due to their inaccurate repair, ultimately resulting in phenotype changes. Some DNA lesions per se may interfere with transcription, leading to temporary phenocopies of mutations. The direct impact of primary DNA lesions on phenotype before their removal by repair is not well understood. To address this question, we used the alpha-test, which allows for detecting various genetic events leading to temporary or hereditary changes in mating type α→a in heterothallic strains of yeast Saccharomyces cerevisiae. Here, we compared yeast strains carrying mutations in DNA repair genes, mismatch repair (pms1), base excision repair (ogg1), and homologous recombination repair (rad52), as well as mutagens causing specific DNA lesions (UV light and camptothecin). We found that double-strand breaks and UV-induced lesions have a stronger effect on the phenotype than mismatches and 8-oxoguanine. Moreover, the loss of the entire chromosome III leads to an immediate mating type switch α→a and does not prevent hybridization. We also evaluated the ability of primary DNA lesions to persist through the cell cycle by assessing the frequency of UV-induced inherited and non-inherited genetic changes in asynchronous cultures of a wild-type (wt) strain and in a cdc28-4 mutant arrested in the G1 phase. Our findings suggest that the phenotypic manifestation of primary DNA lesions depends on their type and the stage of the cell cycle in which it occurred.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Reparo do DNA/genética , Ciclo Celular , DNA/metabolismo
6.
Brief Bioinform ; 19(6): 1085-1101, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-28498882

RESUMO

Cancer is a genetic disorder, meaning that a plethora of different mutations, whether somatic or germ line, underlie the etiology of the 'Emperor of Maladies'. Point mutations, chromosomal rearrangements and copy number changes, whether they have occurred spontaneously in predisposed individuals or have been induced by intrinsic or extrinsic (environmental) mutagens, lead to the activation of oncogenes and inactivation of tumor suppressor genes, thereby promoting malignancy. This scenario has now been recognized and experimentally confirmed in a wide range of different contexts. Over the past decade, a surge in available sequencing technologies has allowed the sequencing of whole genomes from liquid malignancies and solid tumors belonging to different types and stages of cancer, giving birth to the new field of cancer genomics. One of the most striking discoveries has been that cancer genomes are highly enriched with mutations of specific kinds. It has been suggested that these mutations can be classified into 'families' based on their mutational signatures. A mutational signature may be regarded as a type of base substitution (e.g. C:G to T:A) within a particular context of neighboring nucleotide sequence (the bases upstream and/or downstream of the mutation). These mutational signatures, supplemented by mutable motifs (a wider mutational context), promise to help us to understand the nature of the mutational processes that operate during tumor evolution because they represent the footprints of interactions between DNA, mutagens and the enzymes of the repair/replication/modification pathways.


Assuntos
Genômica , Mutação , Neoplasias/genética , DNA/genética , Metilação de DNA , Evolução Molecular , Expressão Gênica , Predisposição Genética para Doença , Humanos , Modelos Genéticos , Mutagênicos/farmacologia , Oncogenes , Seleção Genética
7.
J Biol Chem ; 293(18): 6824-6843, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29555682

RESUMO

DNA polymerase α (Polα) plays an important role in genome replication. In a complex with primase, Polα synthesizes chimeric RNA-DNA primers necessary for replication of both chromosomal DNA strands. During RNA primer extension with deoxyribonucleotides, Polα needs to use double-stranded helical substrates having different structures. Here, we provide a detailed structure-function analysis of human Polα's interaction with dNTPs and DNA templates primed with RNA, chimeric RNA-DNA, or DNA. We report the crystal structures of two ternary complexes of the Polα catalytic domain containing dCTP, a DNA template, and either a DNA or an RNA primer. Unexpectedly, in the ternary complex with a DNA:DNA duplex and dCTP, the "fingers" subdomain of Polα is in the open conformation. Polα induces conformational changes in the DNA and hybrid duplexes to produce the universal double helix form. Pre-steady-state kinetic studies indicated for both duplex types that chemical catalysis rather than product release is the rate-limiting step. Moreover, human Polα extended DNA primers with higher efficiency but lower processivity than it did with RNA and chimeric primers. Polα has a substantial propensity to make errors during DNA synthesis, and we observed that its fidelity depends on the type of sugar at the primer 3'-end. A detailed structural comparison of Polα with other replicative DNA polymerases disclosed common features and some differences, which may reflect the specialization of each polymerase in genome replication.


Assuntos
DNA Polimerase I/metabolismo , Primers do DNA/química , RNA/química , Catálise , Domínio Catalítico , Cátions Bivalentes , Cristalografia por Raios X , DNA Polimerase I/química , Humanos , Cinética , Metais/química , Nucleotídeos/metabolismo , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Moldes Genéticos
8.
Nucleic Acids Res ; 45(20): 11515-11524, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29036687

RESUMO

Nucleotide quality surveillance enzymes play important roles in human health, by detecting damaged molecules in the nucleotide pool and deactivating them before they are incorporated into chromosomal DNA or adversely affect metabolism. In particular, deamination of adenine moiety in (deoxy)nucleoside triphosphates, resulting in formation of (d)ITP, can be deleterious, leading to DNA damage, mutagenesis and other harmful cellular effects. The 21.5 kDa human enzyme that mitigates this damage by conversion of (d)ITP to monophosphate, ITPA, has been proposed as a possible therapeutic and diagnostic target for multiple diseases. Measuring the activity of this enzyme is useful both in basic research and in clinical applications involving this pathway, but current methods are nonselective and are not applicable to measurement of the enzyme from cells or tissues. Here, we describe the design and synthesis of an ITPA-specific chimeric dinucleotide (DIAL) that replaces the pyrophosphate leaving group of the native substrate with adenosine triphosphate, enabling sensitive detection via luciferase luminescence signaling. The probe is shown to function sensitively and selectively to quantify enzyme activity in vitro, and can be used to measure the activity of ITPA in bacterial, yeast and human cell lysates.


Assuntos
Trifosfato de Adenosina/química , Ensaios Enzimáticos/métodos , Corantes Fluorescentes/química , Inosina Monofosfato/análogos & derivados , Medições Luminescentes/métodos , Pirofosfatases/metabolismo , Extratos Celulares/química , Linhagem Celular Tumoral , DNA/genética , Dano ao DNA/genética , Desaminação , Células HeLa , Humanos , Inosina Monofosfato/química , Pirofosfatases/genética , Interferência de RNA , RNA Interferente Pequeno/genética
9.
J Biol Chem ; 292(38): 15717-15730, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28747437

RESUMO

The eukaryotic B-family DNA polymerases include four members: Polα, Polδ, Polϵ, and Polζ, which share common architectural features, such as the exonuclease/polymerase and C-terminal domains (CTDs) of catalytic subunits bound to indispensable B-subunits, which serve as scaffolds that mediate interactions with other components of the replication machinery. Crystal structures for the B-subunits of Polα and Polδ/Polζ have been reported: the former within the primosome and separately with CTD and the latter with the N-terminal domain of the C-subunit. Here we present the crystal structure of the human Polϵ B-subunit (p59) in complex with CTD of the catalytic subunit (p261C). The structure revealed a well defined electron density for p261C and the phosphodiesterase and oligonucleotide/oligosaccharide-binding domains of p59. However, electron density was missing for the p59 N-terminal domain and for the linker connecting it to the phosphodiesterase domain. Similar to Polα, p261C of Polϵ contains a three-helix bundle in the middle and zinc-binding modules on each side. Intersubunit interactions involving 11 hydrogen bonds and numerous hydrophobic contacts account for stable complex formation with a buried surface area of 3094 Å2 Comparative structural analysis of p59-p261C with the corresponding Polα complex revealed significant differences between the B-subunits and CTDs, as well as their interaction interfaces. The B-subunit of Polδ/Polζ also substantially differs from B-subunits of either Polα or Polϵ. This work provides a structural basis to explain biochemical and genetic data on the importance of B-subunit integrity in replisome function in vivo.


Assuntos
Domínio Catalítico , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Humanos , Modelos Moleculares , Ligação Proteica
10.
PLoS Genet ; 11(5): e1005217, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25941824

RESUMO

Mutations in genomes of species are frequently distributed non-randomly, resulting in mutation clusters, including recently discovered kataegis in tumors. DNA editing deaminases play the prominent role in the etiology of these mutations. To gain insight into the enigmatic mechanisms of localized hypermutagenesis that lead to cluster formation, we analyzed the mutational single nucleotide variations (SNV) data obtained by whole-genome sequencing of drug-resistant mutants induced in yeast diploids by AID/APOBEC deaminase and base analog 6-HAP. Deaminase from sea lamprey, PmCDA1, induced robust clusters, while 6-HAP induced a few weak ones. We found that PmCDA1, AID, and APOBEC1 deaminases preferentially mutate the beginning of the actively transcribed genes. Inactivation of transcription initiation factor Sub1 strongly reduced deaminase-induced can1 mutation frequency, but, surprisingly, did not decrease the total SNV load in genomes. However, the SNVs in the genomes of the sub1 clones were re-distributed, and the effect of mutation clustering in the regions of transcription initiation was even more pronounced. At the same time, the mutation density in the protein-coding regions was reduced, resulting in the decrease of phenotypically detected mutants. We propose that the induction of clustered mutations by deaminases involves: a) the exposure of ssDNA strands during transcription and loss of protection of ssDNA due to the depletion of ssDNA-binding proteins, such as Sub1, and b) attainment of conditions favorable for APOBEC action in subpopulation of cells, leading to enzymatic deamination within the currently expressed genes. This model is applicable to both the initial and the later stages of oncogenic transformation and explains variations in the distribution of mutations and kataegis events in different tumor cells.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Ativação Transcricional , Desaminase APOBEC-1 , Alelos , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Aspartato Carbamoiltransferase/genética , Aspartato Carbamoiltransferase/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , DNA de Cadeia Simples , Proteínas de Ligação a DNA/metabolismo , Genes Reporter , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Taxa de Mutação , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo
11.
J Biol Chem ; 291(19): 10006-20, 2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-26975377

RESUMO

The human primosome, a 340-kilodalton complex of primase and DNA polymerase α (Polα), synthesizes chimeric RNA-DNA primers to be extended by replicative DNA polymerases δ and ϵ. The intricate mechanism of concerted primer synthesis by two catalytic centers was an enigma for over three decades. Here we report the crystal structures of two key complexes, the human primosome and the C-terminal domain of the primase large subunit (p58C) with bound DNA/RNA duplex. These structures, along with analysis of primase/polymerase activities, provide a plausible mechanism for all transactions of the primosome including initiation, elongation, accurate counting of RNA primer length, primer transfer to Polα, and concerted autoregulation of alternate activation/inhibition of the catalytic centers. Our findings reveal a central role of p58C in the coordinated actions of two catalytic domains in the primosome and ultimately could impact the design of anticancer drugs.


Assuntos
DNA Polimerase I/química , DNA Primase/química , DNA/química , Complexos Multienzimáticos/química , Ácidos Nucleicos Heteroduplexes/química , DNA/biossíntese , DNA Polimerase I/metabolismo , DNA Primase/metabolismo , Humanos , Complexos Multienzimáticos/metabolismo , Ácidos Nucleicos Heteroduplexes/metabolismo
12.
J Biol Chem ; 291(9): 4793-802, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26710848

RESUMO

DNA replication in almost all organisms depends on the activity of DNA primase, a DNA-dependent RNA polymerase that synthesizes short RNA primers of defined size for DNA polymerases. Eukaryotic and archaeal primases are heterodimers consisting of small catalytic and large accessory subunits, both of which are necessary for the activity. The mode of interaction of primase subunits with substrates during the various steps of primer synthesis that results in the counting of primer length is not clear. Here we show that the C-terminal domain of the large subunit (p58C) plays a major role in template-primer binding and also defines the elements of the DNA template and the RNA primer that interact with p58C. The specific mode of interaction with a template-primer involving the terminal 5'-triphosphate of RNA and the 3'-overhang of DNA results in a stable complex between p58C and the DNA/RNA duplex. Our results explain how p58C participates in RNA synthesis and primer length counting and also indicate that the binding site for initiating NTP is located on p58C. These findings provide notable insight into the mechanism of primase function and are applicable for DNA primases from other species.


Assuntos
DNA Primase/metabolismo , DNA de Cadeia Simples/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Modelos Moleculares , Enzimas Multifuncionais/metabolismo , RNA/metabolismo , Transcrição Gênica , Sítios de Ligação , DNA Primase/química , DNA Primase/genética , DNA de Cadeia Simples/química , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Polarização de Fluorescência , Corantes Fluorescentes/química , Humanos , Cinética , Enzimas Multifuncionais/química , Enzimas Multifuncionais/genética , Conformação de Ácido Nucleico , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , RNA/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
13.
J Biol Chem ; 290(23): 14328-37, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25847248

RESUMO

In eukaryotic DNA replication, short RNA-DNA hybrid primers synthesized by primase-DNA polymerase α (Prim-Pol α) are needed to start DNA replication by the replicative DNA polymerases, Pol δ and Pol ϵ. The C terminus of the Pol α catalytic subunit (p180C) in complex with the B subunit (p70) regulates the RNA priming and DNA polymerizing activities of Prim-Pol α. It tethers Pol α and primase, facilitating RNA primer handover from primase to Pol α. To understand these regulatory mechanisms and to reveal the details of human Pol α organization, we determined the crystal structure of p70 in complex with p180C. The structured portion of p70 includes a phosphodiesterase (PDE) domain and an oligonucleotide/oligosaccharide binding (OB) domain. The N-terminal domain and the linker connecting it to the PDE domain are disordered in the reported crystal structure. The p180C adopts an elongated asymmetric saddle shape, with a three-helix bundle in the middle and zinc-binding modules (Zn1 and Zn2) on each side. The extensive p180C-p70 interactions involve 20 hydrogen bonds and a number of hydrophobic interactions resulting in an extended buried surface of 4080 Å(2). Importantly, in the structure of the p180C-p70 complex with full-length p70, the residues from the N-terminal to the OB domain contribute to interactions with p180C. The comparative structural analysis revealed both the conserved features and the differences between the human and yeast Pol α complexes.


Assuntos
DNA Polimerase I/química , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Subunidades Proteicas/química , Alinhamento de Sequência
14.
J Biol Chem ; 290(9): 5635-46, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25550159

RESUMO

DNA replication in bacteria and eukaryotes requires the activity of DNA primase, a DNA-dependent RNA polymerase that lays short RNA primers for DNA polymerases. Eukaryotic and archaeal primases are heterodimers consisting of small catalytic and large accessory subunits, both of which are necessary for RNA primer synthesis. Understanding of RNA synthesis priming in eukaryotes is currently limited due to the lack of crystal structures of the full-length primase and its complexes with substrates in initiation and elongation states. Here we report the crystal structure of the full-length human primase, revealing the precise overall organization of the enzyme, the relative positions of its functional domains, and the mode of its interaction with modeled DNA and RNA. The structure indicates that the dramatic conformational changes in primase are necessary to accomplish the initiation and then elongation of RNA synthesis. The presence of a long linker between the N- and C-terminal domains of p58 provides the structural basis for the bulk of enzyme's conformational flexibility. Deletion of most of this linker affected the initiation and elongation steps of the primer synthesis.


Assuntos
DNA Primase/química , Modelos Moleculares , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , DNA/genética , DNA/metabolismo , DNA Primase/genética , DNA Primase/metabolismo , Eletroforese em Gel de Poliacrilamida , Humanos , Ligação de Hidrogênio , Mutação , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA/genética , RNA/metabolismo , Especificidade por Substrato
15.
Nucleic Acids Res ; 42(22): 14013-21, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25429975

RESUMO

Natural tetracyclic diterpenoid aphidicolin is a potent and specific inhibitor of B-family DNA polymerases, haltering replication and possessing a strong antimitotic activity in human cancer cell lines. Clinical trials revealed limitations of aphidicolin as an antitumor drug because of its low solubility and fast clearance from human plasma. The absence of structural information hampered the improvement of aphidicolin-like inhibitors: more than 50 modifications have been generated so far, but all have lost the inhibitory and antitumor properties. Here we report the crystal structure of the catalytic core of human DNA polymerase α (Pol α) in the ternary complex with an RNA-primed DNA template and aphidicolin. The inhibitor blocks binding of dCTP by docking at the Pol α active site and by rotating the template guanine. The structure provides a plausible mechanism for the selectivity of aphidicolin incorporation opposite template guanine and explains why previous modifications of aphidicolin failed to improve its affinity for Pol α. With new structural information, aphidicolin becomes an attractive lead compound for the design of novel derivatives with enhanced inhibitory properties for B-family DNA polymerases.


Assuntos
Afidicolina/química , DNA Polimerase I/química , Replicação do DNA/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores da Síntese de Ácido Nucleico/química , Afidicolina/análogos & derivados , Domínio Catalítico , Guanina/química , Humanos , Modelos Moleculares , RNA/química
16.
PLoS Genet ; 9(9): e1003736, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24039593

RESUMO

Genetic information should be accurately transmitted from cell to cell; conversely, the adaptation in evolution and disease is fueled by mutations. In the case of cancer development, multiple genetic changes happen in somatic diploid cells. Most classic studies of the molecular mechanisms of mutagenesis have been performed in haploids. We demonstrate that the parameters of the mutation process are different in diploid cell populations. The genomes of drug-resistant mutants induced in yeast diploids by base analog 6-hydroxylaminopurine (HAP) or AID/APOBEC cytosine deaminase PmCDA1 from lamprey carried a stunning load of thousands of unselected mutations. Haploid mutants contained almost an order of magnitude fewer mutations. To explain this, we propose that the distribution of induced mutation rates in the cell population is uneven. The mutants in diploids with coincidental mutations in the two copies of the reporter gene arise from a fraction of cells that are transiently hypersensitive to the mutagenic action of a given mutagen. The progeny of such cells were never recovered in haploids due to the lethality caused by the inactivation of single-copy essential genes in cells with too many induced mutations. In diploid cells, the progeny of hypersensitive cells survived, but their genomes were saturated by heterozygous mutations. The reason for the hypermutability of cells could be transient faults of the mutation prevention pathways, like sanitization of nucleotide pools for HAP or an elevated expression of the PmCDA1 gene or the temporary inability of the destruction of the deaminase. The hypothesis on spikes of mutability may explain the sudden acquisition of multiple mutational changes during evolution and carcinogenesis.


Assuntos
Citosina Desaminase/genética , Diploide , Haploidia , Taxa de Mutação , Desaminase APOBEC-1 , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Genoma Fúngico/efeitos dos fármacos , Humanos , Lampreias/metabolismo , Mutagênese/efeitos dos fármacos , Mutação/genética , Saccharomyces cerevisiae/efeitos dos fármacos
17.
J Biol Chem ; 289(32): 22021-34, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-24962573

RESUMO

The initiation of DNA synthesis during replication of the human genome is accomplished primarily by the DNA polymerase α-primase complex, which makes the RNA-DNA primers accessible to processive DNA pols. The structural information needed to understand the mechanism of regulation of this complex biochemical reaction is incomplete. The presence of two enzymes in one complex poses the question of how these two enzymes cooperate during priming of DNA synthesis. Yeast two-hybrid and direct pulldown assays revealed that the N-terminal domain of the large subunit of primase (p58N) directly interacts with the C-terminal domain of the catalytic subunit of polα (p180C). We found that a complex of the C-terminal domain of the catalytic subunit of polα with the second subunit (p180C-p70) stimulated primase activity, whereas the whole catalytically active heterodimer of polα (p180ΔN-p70) inhibited RNA synthesis by primase. Conversely, the polα catalytic domain without the C-terminal part (p180ΔN-core) possessed a much higher propensity to extend the RNA primer than the two-subunit polα (p180ΔN-p70), suggesting that p180C and/or p70 are involved in the negative regulation of DNA pol activity. We conclude that the interaction between p180C, p70, and p58 regulates the proper primase and polymerase function. The composition of the template DNA is another important factor determining the activity of the complex. We have found that polα activity strongly depends on the sequence of the template and that homopyrimidine runs create a strong barrier for DNA synthesis by polα.


Assuntos
DNA Polimerase I/química , DNA Polimerase I/metabolismo , DNA Primase/química , DNA Primase/metabolismo , Domínio Catalítico , DNA Polimerase I/genética , DNA Primase/genética , Replicação do DNA , Humanos , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido
18.
J Struct Biol ; 182(3): 197-208, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23528839

RESUMO

Inosine triphosphate pyrophosphatase (ITPA), a key enzyme involved in maintaining the purity of cellular nucleoside triphosphate pools, specifically recognizes inosine triphosphate and xanthosine triphosphate (including the deoxyribose forms) and detoxifies them by catalyzing the hydrolysis of a phosphoanhydride bond, releasing pyrophosphate. This prevents their inappropriate use as substrates in enzymatic reactions utilizing (d)ATP or (d)GTP. A human genetic polymorphism leads to the substitution of Thr for Pro32 (P32T) and causes ITPA deficiency in erythrocytes, with heterozygotes having on average 22.5% residual activity, and homozygotes having undetectable activity. This polymorphism has been implicated in modulating patients' response to mercaptopurines and ribavirin. Human fibroblasts containing this variant have elevated genomic instability upon treatment with base analogs. We find that the wild-type and P32T forms are dimeric in solution and in the crystal structure. This abolishes the previous speculation that the P32T change disrupts dimerization as a mechanism of inactivation. The only difference in structure from the wild-type protein is that the area surrounding Thr32 is disrupted. Phe31 is flipped from the hydrophobic core out into the solvent, leaving a hole in the hydrophobic core of the protein which likely accounts for the reduced thermal stability of P32T ITPA and ultimately leads to its susceptibility to degradation in human cells. Circular dichroism and thermal denaturation studies confirm these structural results. We propose that the dimer of P32T variant subunit with wild-type subunit is degraded in cells similarly to the P32T homodimer explaining the level of loss of ITPA activity in heterozygotes.


Assuntos
Instabilidade Genômica , Pirofosfatases/genética , Relação Estrutura-Atividade , Dicroísmo Circular , Eritrócitos/citologia , Eritrócitos/metabolismo , Heterozigoto , Humanos , Interações Hidrofóbicas e Hidrofílicas , Mutação , Nucleotídeos/genética , Polimorfismo Genético , Conformação Proteica , Pirofosfatases/química , Pirofosfatases/deficiência , Pirofosfatases/metabolismo
19.
J Biol Chem ; 287(21): 17281-17287, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22465957

RESUMO

Translesion DNA synthesis is an important branch of the DNA damage tolerance pathway that assures genomic integrity of living organisms. The mechanisms of DNA polymerase (Pol) switches during lesion bypass are not known. Here, we show that the C-terminal domain of the Pol ζ catalytic subunit interacts with accessory subunits of replicative DNA Pol δ. We also show that, unlike other members of the human B-family of DNA polymerases, the highly conserved and similar C-terminal domains of Pol δ and Pol ζ contain a [4Fe-4S] cluster coordinated by four cysteines. Amino acid changes in Pol ζ that prevent the assembly of the [4Fe-4S] cluster abrogate Pol ζ function in UV mutagenesis. On the basis of these data, we propose that Pol switches at replication-blocking lesions occur by the exchange of the Pol δ and Pol ζ catalytic subunits on a preassembled complex of accessory proteins retained on DNA during translesion DNA synthesis.


Assuntos
DNA Polimerase III/metabolismo , DNA Polimerase II/metabolismo , Replicação do DNA/fisiologia , DNA Polimerase II/genética , DNA Polimerase III/genética , Replicação do DNA/efeitos da radiação , Humanos , Mutagênese/efeitos da radiação , Proteínas de Ligação a Poli-ADP-Ribose , Estrutura Terciária de Proteína , Raios Ultravioleta
20.
Mutat Res ; 753(2): 131-146, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23969025

RESUMO

Cellular nucleotide pools are often contaminated by base analog nucleotides which interfere with a plethora of biological reactions, from DNA and RNA synthesis to cellular signaling. An evolutionarily conserved inosine triphosphate pyrophosphatase (ITPA) removes the non-canonical purine (d)NTPs inosine triphosphate and xanthosine triphosphate by hydrolyzing them into their monophosphate form and pyrophosphate. Mutations in the ITPA orthologs in model organisms lead to genetic instability and, in mice, to severe developmental anomalies. In humans there is genetic polymorphism in ITPA. One allele leads to a proline to threonine substitution at amino acid 32 and causes varying degrees of ITPA deficiency in tissues and plays a role in patients' response to drugs. Structural analysis of this mutant protein reveals that the protein is destabilized by the formation of a cavity in its hydrophobic core. The Pro32Thr allele is thought to cause the observed dominant negative effect because the resulting active enzyme monomer targets both homo- and heterodimers to degradation.


Assuntos
Pirofosfatases/metabolismo , Animais , Escherichia coli/enzimologia , Humanos , Camundongos , Modelos Moleculares , Farmacogenética , Polimorfismo Genético , Pirofosfatases/química , Pirofosfatases/deficiência , Pirofosfatases/genética , Leveduras/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA