Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nanomedicine ; 14(7): 2375-2385, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-28614734

RESUMO

Photocrosslinkable magnetic hydrogels are attracting great interest for tissue engineering strategies due to their versatility and multifunctionality, including their remote controllability ex vivo, thus enabling engineering complex tissue interfaces. This study reports the development of a photocrosslinkable magnetic responsive hydrogel made of methacrylated chondroitin sulfate (MA-CS) enriched with platelet lysate (PL) with tunable features, envisioning their application in tendon-to-bone interface. MA-CS coated iron-based magnetic nanoparticles were incorporated to provide magnetic responsiveness to the hydrogel. Osteogenically differentiated adipose-derived stem cells and/or tendon-derived cells were encapsulated within the hydrogel, proliferating and expressing bone- and tendon-related markers. External magnetic field (EMF) application modulated the swelling, degradation and release of PL-derived growth factors, and impacted both cell morphology and the expression and synthesis of tendon- and bone-like matrix with a more evident effect in co-cultures. Overall, the developed magnetic responsive hydrogel represents a potential cell carrier system for interfacial tissue engineering with EMF-controlled properties.


Assuntos
Tecido Adiposo/citologia , Hidrogéis/química , Magnetismo , Células-Tronco/citologia , Tendões/citologia , Engenharia Tecidual , Diferenciação Celular , Células Cultivadas , Humanos , Osteogênese
2.
Nanotechnology ; 27(4): 045501, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26658286

RESUMO

The ability to detect the magnetic fields that surround us has promoted vast technological advances in sensing techniques. Among those, magnetoresistive sensors display an unpaired spatial resolution. Here, we successfully control the linear range of nanometric sensors using an interfacial exchange bias sensing layer coupling. An effective matching of material properties and sensor geometry improves the nanosensor performance, with top sensitivities of 3.7% mT(-1). The experimental results are well supported by 3D micromagnetic and magneto-transport simulations.

3.
IEEE Trans Biomed Circuits Syst ; 16(5): 779-792, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35830413

RESUMO

This work presents an eyeblink system that detects magnets placed on the eyelid via integrated magnetic sensors and an analogue circuit on an eyewear frame (without a glass lens). The eyelid magnets were detected using tunnelling magnetoresistance (TMR) bridge sensors with a sensitivity of 14 mV/V/Oe and were positioned centre-right and centre-left of the eyewear frame. Each eye side has a single TMR sensor wired to a single circuit, where the signal was filtered (<0.5 Hz and >30 Hz) and amplified to detect the weak magnetic field produced by the 3-millimetre (mm) diameter and 0.5 mm thickness N42 Neodymium magnets attached to a medical tape strip, for the adult-age demographic. Each eyeblink was repeated by a trigger command (right eyeblink) followed by the appropriate command, right, left or both eyeblinks. The eyeblink gesture system has shown repeatability, resulting in blinking classification based on the analogue signal amplitude threshold. As a result, the signal can be scaled and classified as well as, integrated with a Bluetooth module in real-time. This will enable end-users to connect to various other Bluetooth enabled devices for wireless assistive technologies. The eyeblink system was tested by 14 participants via a stimuli-based game. Within an average time of 185-seconds, the system demonstrated a group mean accuracy of 72% for 40 commands. Moreover, the maximum information transfer rate (ITR) of the participants was 35.95 Bits per minute.


Assuntos
Piscadela , Dispositivos Eletrônicos Vestíveis , Adulto , Humanos , Gestos , Pálpebras
4.
Polymers (Basel) ; 14(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36145852

RESUMO

Magnetic sensor systems integrate a sensing element and magnetic field generators to determine their relative position or to measure movement. Typically, the magnetic fields are produced by permanent magnets, which have high intensity but are hard to machine into custom shapes. However, novel solutions using magnetic polymer composites (MPCs) have emerged as field generators due to their low cost, weight and patterning freedom. Here, we present a finite element model developed in COMSOL Multiphysics that allows the design of complex magnetization patterns on these polymer composites, taking into account the geometries of the parts and the magnetic properties of the materials employed. The model, together with the characterization protocol of the materials, has proved to be capable of predicting the magnetization of polymer composites at different temperatures. In addition, the model incorporates the properties of the magnets used during the magnetization process, such as the size, shape and magnetization, as well as the properties of the surrounding elements. This new model facilitates the design of new polymeric parts with complex shapes and magnetization patterns that can be employed as field generators in magnetic sensing systems.

5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 3415-3419, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018737

RESUMO

Magnetomyography (MMG) is the measurement of magnetic signals generated in the skeletal muscle of humans by electrical activities. However, current technologies developed to detect such tiny magnetic field are bulky, costly and require working at the temperature-controlled environment. Developing a miniaturized, low cost and room temperature magnetic sensors provide an avenue to enhance this research field. Herein, we present an integrated tunnelling magnetoresistive (TMR) array for room temperature MMG applications. TMR sensors were developed with low-noise analogue front-end circuitry to detect the MMG signals without and with averaging at a high signal-to-noise ratio. The MMG was achieved by averaging signals using the Electromyography (EMG) signal as a trigger. Amplitudes of 200 pT and 30 pT, corresponding to periods when the hand is tense and relaxed, were observed, which is consistent with muscle simulations based on finite-element method (FEM) considering the effect of distance from the observation point to the magnetic field source.


Assuntos
Campos Magnéticos , Músculo Esquelético , Eletromiografia , Humanos , Magnetismo , Razão Sinal-Ruído
6.
IEEE Trans Biomed Circuits Syst ; 14(6): 1299-1310, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32991289

RESUMO

The tracking of eye gesture movements using wearable technologies can undoubtedly improve quality of life for people with mobility and physical impairments by using spintronic sensors based on the tunnel magnetoresistance (TMR) effect in a human-machine interface. Our design involves integrating three TMR sensors on an eyeglass frame for detecting relative movement between the sensor and tiny magnets embedded in an in-house fabricated contact lens. Using TMR sensors with the sensitivity of 11 mV/V/Oe and ten <1 mm3 embedded magnets within a lens, an eye gesture system was implemented with a sampling frequency of up to 28 Hz. Three discrete eye movements were successfully classified when a participant looked up, right or left using a threshold-based classifier. Moreover, our proof-of-concept real-time interaction system was tested on 13 participants, who played a simplified Tetris game using their eye movements. Our results show that all participants were successful in completing the game with an average accuracy of 90.8%.


Assuntos
Auxiliares de Comunicação para Pessoas com Deficiência , Movimentos Oculares/fisiologia , Tecnologia de Rastreamento Ocular/instrumentação , Tecnologia sem Fio/instrumentação , Gestos , Humanos , Magnetismo , Sistemas Homem-Máquina , Processamento de Sinais Assistido por Computador/instrumentação , Dispositivos Eletrônicos Vestíveis
7.
Nanoscale ; 11(39): 18255-18271, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31566629

RESUMO

Tendons are highly specialized load-bearing tissues with very limited healing capacity. Given their mechanosensitive nature, the combination of tendon mimetic scaffolds with remote mechanical actuation could synergistically contribute to the fabrication of improved tissue engineered alternatives for the functional regeneration of tendons. Here, hybrids of cellulose nanocrystals decorated with magnetic nanoparticles were produced to simultaneously reinforce and confer magnetic responsiveness to tendon mimetic hierarchical fibrous scaffolds, resulting in a system that enables remote stimulation of cells in vitro and, potentially, in vivo after construct transplantation. The biological performance and functionality of these scaffolds were evaluated using human adipose stem cells (hASCs) cultured under or in the absence of magnetic actuation. It was demonstrated that magneto-mechanical stimulation of hASCs promotes higher degrees of cell cytoskeleton anisotropic organization and steers the mechanosensitive YAP/TAZ signaling pathway. As feedback, stimulated cells show increased expression of tendon-related markers, as well as a pro-healing profile in genes related to their inflammatory secretome. Overall, these results support the use of the proposed magnetic responsive fibrous scaffolds as remote biointegrated actuators that can synergistically boost hASC tenogenesis through mechanosensing mechanisms and may modulate their pro-healing paracrine signaling, thus collectively contributing to the improvement of the regenerative potential of engineered tendon grafts.


Assuntos
Tecido Adiposo/metabolismo , Diferenciação Celular , Campos Magnéticos , Nanopartículas/química , Células-Tronco/metabolismo , Tendões/metabolismo , Alicerces Teciduais/química , Tecido Adiposo/citologia , Celulose/química , Humanos , Células-Tronco/citologia , Tendões/citologia , Engenharia Tecidual
8.
Biosens Bioelectron ; 142: 111550, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31387024

RESUMO

Microcystins are the most worldwide extended and common toxins produced by cyanobacteria in freshwater. Microcystin-leucine arginine (MC-LR), associated with the most toxic incidents involving microcystins, are within the cyanobacteria (intracellular) until released into the surrounding waters (extracellular) during cell lysis. Therefore, the relationship between intracellular and extracellular cyanotoxins will allow a comprehensive risk of cyanobacteria-containing waters, preventing disease and improving human safety. In this work, we present the development of a novel portable microfluidic sensing platform for the simultaneous detection of free (extracellular) and total MC-LR (intracellular and extracellular). The integrated system contains the sample processing and detection modules capable of performing the chemical lysis, filtration, sample mixing with antibodies, and electrochemical detection of MC-LR based on an indirect strategy. The performance of the immunosensors was evaluated by electrochemical impedance spectroscopy, showing a linear dynamic range between 3.3 × 10-4 and 10-7 g L-1 and a limit of detection of 5.7 × 10-10 g L-1. The results demonstrate the potential of the developed portable biosensor platform and its suitable application for the analysis of MC-LR at regulated levels for drinking water. Finally, the integrated system was able to simultaneously detect the free and total MC-LR on a Microcystis aeruginosa culture. To the best of our knowledge this is the first described system that can differentiate between intracellular and extracellular concentration of MC-LR. This novel electrochemical sensing platform avoids the multiple processing steps typically needed for standard MC-LR analysis in the laboratory and provides an early warning system for MC-LR remote monitoring in water.


Assuntos
Técnicas Biossensoriais/instrumentação , Espectroscopia Dielétrica/instrumentação , Água Doce/análise , Microcistinas/análise , Desenho de Equipamento , Limite de Detecção , Toxinas Marinhas , Microcystis/química , Poluentes Químicos da Água/análise
9.
Adv Healthc Mater ; 7(15): e1800124, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29797461

RESUMO

Tuberculosis (TB) is an infectious disease which affects millions of people worldwide. Inhalable polymeric dry powders are promising alternatives as anti-TB drug carriers to the alveoli milieu and infected macrophages, with potential to significantly improve the therapeutics efficiency. Here, the development of a magnetically responsive microparticulate system for pulmonary delivery of an anti-TB drug candidate (P3) is reported. Microparticles (MPs) are developed based on a cast method using calcium carbonate sacrificial templates and incorporate superparamagnetic iron oxide nanoparticles to concentrate MPs in alveoli and enable drug on demand release upon actuation of an external alternate magnetic field (AMF). The MPs are shown to be suitable for P3 delivery to the lower airways and for alveolar macrophage phagocytosis. The developed MPs reveal unique and promising features to be used as an inhalable dry powder allowing the AMF control over dosage and frequency of drug delivery anticipating improved TB treatments.


Assuntos
Antituberculosos/análise , Antituberculosos/química , Compostos Férricos/química , Nanopartículas de Magnetita/química , Administração por Inalação , Linhagem Celular , Sobrevivência Celular/fisiologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Humanos , Macrófagos Alveolares/metabolismo , Nanopartículas/química , Fagocitose/fisiologia
10.
Adv Healthc Mater ; 5(2): 213-22, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26606262

RESUMO

The application of magnetic nanoparticles (MNPs) in tissue engineering (TE) approaches opens several new research possibilities in this field, enabling a new generation of multifunctional constructs for tissue regeneration. This study describes the development of sophisticated magnetic polymer scaffolds with aligned structural features aimed at applications in tendon tissue engineering (TTE). Tissue engineering magnetic scaffolds are prepared by incorporating iron oxide MNPs into a 3D structure of aligned SPCL (starch and polycaprolactone) fibers fabricated by rapid prototyping (RP) technology. The 3D architecture, composition, and magnetic properties are characterized. Furthermore, the effect of an externally applied magnetic field is investigated on the tenogenic differentiation of adipose stem cells (ASCs) cultured onto the developed magnetic scaffolds, demonstrating that ASCs undergo tenogenic differentiation synthesizing a Tenascin C and Collagen type I rich matrix under magneto-stimulation conditions. Finally, the developed magnetic scaffolds were implanted in an ectopic rat model, evidencing good biocompatibility and integration within the surrounding tissues. Together, these results suggest that the effect of the magnetic aligned scaffolds structure combined with magnetic stimulation has a significant potential to impact the field of tendon tissue engineering toward the development of more efficient regeneration therapies.


Assuntos
Magnetismo , Poliésteres/farmacologia , Regeneração/efeitos dos fármacos , Amido/farmacologia , Tendões/fisiologia , Alicerces Teciduais/química , Tecido Adiposo/citologia , Animais , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Colágeno Tipo I/metabolismo , Compostos Férricos/química , Humanos , Implantes Experimentais , Masculino , Camundongos , Nanopartículas/química , Nanopartículas/ultraestrutura , Ratos Wistar , Eletricidade Estática , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Tela Subcutânea/efeitos dos fármacos , Tenascina/metabolismo , Tendões/efeitos dos fármacos
11.
Nanoscale ; 6(4): 2097-101, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24407249

RESUMO

Well-ordered tilted silicon nanobelt arrays have been fabricated over a large area (≥2.5 cm(2)) by metal assisted chemical etching of pre-patterned silicon, which demonstrated markedly enhanced solar hydrogen evolution performance, compared with planar silicon of the same type and previously reported silicon nanowires prepared in a similar way.


Assuntos
Hidrogênio/química , Nanofios/química , Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA