Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Physiol ; 599(1): 343-356, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33026102

RESUMO

KEY POINTS: The distribution of pulmonary perfusion is affected by gravity, vascular branching structure and active regulatory mechanisms, which may be disrupted by cardiopulmonary disease, but this is not well studied, particularly in rare conditions. We evaluated pulmonary perfusion in patients who had undergone Fontan procedure, patients with pulmonary arterial hypertension (PAH) and two groups of controls using a proton magnetic resonance imaging technique, arterial spin labelling to measure perfusion. Heterogeneity was assessed by the relative dispersion (SD/mean) and gravitational gradients. Gravitational gradients were similar between all groups, but heterogeneity was significantly increased in both patient groups compared to controls and persisted after removing contributions from large blood vessels and gravitational gradients. Patients with Fontan physiology and patients with PAH have increased pulmonary perfusion heterogeneity that is not explainable by differences in mean perfusion, gravitational gradients, or large vessel anatomy. This probably reflects vascular remodelling in PAH and possibly in Fontan physiology. ABSTRACT: Many factors affect the distribution of pulmonary perfusion, which may be disrupted by cardiopulmonary disease, but this is not well studied, particularly in rare conditions. An example is following the Fontan procedure, where pulmonary perfusion is passive, and heterogeneity may be increased because of the underlying pathophysiology leading to Fontan palliation, remodelling, or increased gravitational gradients from low flow. Another is pulmonary arterial hypertension (PAH), where gravitational gradients may be reduced secondary to high pressures, but remodelling may increase perfusion heterogeneity. We evaluated regional pulmonary perfusion in Fontan patients (n = 5), healthy young controls (Fontan control, n = 5), patients with PAH (n = 6) and healthy older controls (PAH control) using proton magnetic resonance imaging. Regional perfusion was measured using arterial spin labelling. Heterogeneity was assessed by the relative dispersion (SD/mean) and gravitational gradients. Mean perfusion was similar (Fontan = 2.50 ± 1.02 ml min-1  ml-1 ; Fontan control = 3.09 ± 0.58, PAH = 3.63 ± 1.95; PAH control = 3.98 ± 0.91, P = 0.26), and the slopes of gravitational gradients were not different (Fontan = -0.23 ± 0.09 ml min-1  ml-1  cm-1 ; Fontan control = -0.29 ± 0.23, PAH = -0.27 ± 0.09, PAH control = -0.25 ± 0.18, P = 0.91) between groups. Perfusion relative dispersion was greater in both Fontan and PAH than controls (Fontan = 1.46 ± 0.18; Fontan control = 0.99 ± 0.21, P = 0.005; PAH = 1.22 ± 0.27, PAH control = 0.91 ± 0.12, P = 0.02) but similar between patient groups (P = 0.13). These findings persisted after removing contributions from large blood vessels and gravitational gradients (all P < 0.05). We conclude that patients with Fontan physiology and PAH have increased pulmonary perfusion heterogeneity that is not explained by differences in mean perfusion, gravitational gradients, or large vessel anatomy. This probably reflects the effects of remodelling in PAH and possibly in Fontan physiology.


Assuntos
Técnica de Fontan , Hipertensão Arterial Pulmonar , Humanos , Pulmão , Perfusão , Circulação Pulmonar
2.
J Appl Physiol (1985) ; 134(4): 969-979, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36861672

RESUMO

Global fluctuation dispersion (FDglobal), a spatial-temporal metric derived from serial images of the pulmonary perfusion obtained with MRI-arterial spin labeling, describes temporal fluctuations in the spatial distribution of perfusion. In healthy subjects, FDglobal is increased by hyperoxia, hypoxia, and inhaled nitric oxide. We evaluated patients with pulmonary arterial hypertension (PAH, 4F, aged 47 ± 15, mean pulmonary artery pressure 48 ± 7 mmHg) and healthy controls (CON, 7F, aged 47 ± 12) to test the hypothesis that FDglobal is increased in PAH. Images were acquired at ∼4-5 s intervals during voluntary respiratory gating, inspected for quality, registered using a deformable registration algorithm, and normalized. Spatial relative dispersion (RD = SD/mean) and the percent of the lung image with no measurable perfusion signal (%NMP) were also assessed. FDglobal was significantly increased in PAH (PAH = 0.40 ± 0.17, CON = 0.17 ± 0.02, P = 0.006, a 135% increase) with no overlap in values between the two groups, consistent with altered vascular regulation. Both spatial RD and %NMP were also markedly greater in PAH vs. CON (PAH RD = 1.46 ± 0.24, CON = 0.90 ± 0.10, P = 0.0004; PAH NMP = 13.4 ± 6.1%; CON = 2.3 ± 1.4%, P = 0.001 respectively) consistent with vascular remodeling resulting in poorly perfused regions of lung and increased spatial heterogeneity. The difference in FDglobal between normal subjects and patients with PAH in this small cohort suggests that spatial-temporal imaging of perfusion may be useful in the evaluation of patients with PAH. Since this MR imaging technique uses no injected contrast agents and has no ionizing radiation it may be suitable for use in diverse patient populations.NEW & NOTEWORTHY Using proton MRI-arterial spin labeling to obtain serial images of pulmonary perfusion, we show that global fluctuation dispersion (FDglobal), a metric of temporal fluctuations in the spatial distribution of perfusion, was significantly increased in female patients with pulmonary arterial hypertension (PAH) compared with healthy controls. This potentially indicates pulmonary vascular dysregulation. Dynamic measures using proton MRI may provide new tools for evaluating individuals at risk of PAH or for monitoring therapy in patients with PAH.


Assuntos
Hipertensão Arterial Pulmonar , Circulação Pulmonar , Humanos , Feminino , Circulação Pulmonar/fisiologia , Prótons , Pulmão/fisiologia , Imageamento por Ressonância Magnética/métodos
3.
Physiol Rep ; 8(13): e14488, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32638530

RESUMO

Proton magnetic resonance (MR) imaging to quantify regional ventilation-perfusion ( V˙A/Q˙ ) ratios combines specific ventilation imaging (SVI) and separate proton density and perfusion measures into a composite map. Specific ventilation imaging exploits the paramagnetic properties of O2 , which alters the local MR signal intensity, in an FI O2 -dependent manner. Specific ventilation imaging data are acquired during five wash-in/wash-out cycles of breathing 21% O2 alternating with 100% O2 over ~20 min. This technique assumes that alternating FI O2 does not affect V˙A/Q˙ heterogeneity, but this is unproven. We tested the hypothesis that alternating FI O2 exposure increases V˙A/Q˙ mismatch in nine patients with abnormal pulmonary gas exchange and increased V˙A/Q˙ mismatch using the multiple inert gas elimination technique (MIGET).The following data were acquired (a) breathing air (baseline), (b) breathing alternating air/100% O2 during an emulated-SVI protocol (eSVI), and (c) 20 min after ambient air breathing (recovery). MIGET heterogeneity indices of shunt, deadspace, ventilation versus V˙A/Q˙ ratio, LogSD V˙ , and perfusion versus V˙A/Q˙ ratio, LogSD Q˙ were calculated. LogSD V˙ was not different between eSVI and baseline (1.04 ± 0.39 baseline, 1.05 ± 0.38 eSVI, p = .84); but was reduced compared to baseline during recovery (0.97 ± 0.39, p = .04). There was no significant difference in LogSD Q˙ across conditions (0.81 ± 0.30 baseline, 0.79 ± 0.15 eSVI, 0.79 ± 0.20 recovery; p = .54); Deadspace was not significantly different (p = .54) but shunt showed a borderline increase during eSVI (1.0% ± 1.0 baseline, 2.6% ± 2.9 eSVI; p = .052) likely from altered hypoxic pulmonary vasoconstriction and/or absorption atelectasis. Intermittent breathing of 100% O2 does not substantially alter V˙A/Q˙ matching and if SVI measurements are made after perfusion measurements, any potential effects will be minimized.


Assuntos
Hiperóxia/fisiopatologia , Respiração com Pressão Positiva Intermitente/métodos , Imageamento por Ressonância Magnética/métodos , Relação Ventilação-Perfusão , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Gases Nobres
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA