Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(31): 15356-15361, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31311864

RESUMO

Thermophotovoltaic power conversion utilizes thermal radiation from a local heat source to generate electricity in a photovoltaic cell. It was shown in recent years that the addition of a highly reflective rear mirror to a solar cell maximizes the extraction of luminescence. This, in turn, boosts the voltage, enabling the creation of record-breaking solar efficiency. Now we report that the rear mirror can be used to create thermophotovoltaic systems with unprecedented high thermophotovoltaic efficiency. This mirror reflects low-energy infrared photons back into the heat source, recovering their energy. Therefore, the rear mirror serves a dual function; boosting the voltage and reusing infrared thermal photons. This allows the possibility of a practical >50% efficient thermophotovoltaic system. Based on this reflective rear mirror concept, we report a thermophotovoltaic efficiency of 29.1 ± 0.4% at an emitter temperature of 1,207 °C.

2.
Sci Adv ; 5(2): eaav2012, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30793032

RESUMO

One source of instability in perovskite solar cells (PSCs) is interfacial defects, particularly those that exist between the perovskite and the hole transport layer (HTL). We demonstrate that thermally evaporated dopant-free tetracene (120 nm) on top of the perovskite layer, capped with a lithium-doped Spiro-OMeTAD layer (200 nm) and top gold electrode, offers an excellent hole-extracting stack with minimal interfacial defect levels. For a perovskite layer interfaced between these graded HTLs and a mesoporous TiO2 electron-extracting layer, its photoluminescence yield reaches 15% compared to 5% for the perovskite layer interfaced between TiO2 and Spiro-OMeTAD alone. For PSCs with graded HTL structure, we demonstrate efficiency of up to 21.6% and an extended power output of over 550 hours of continuous illumination at AM1.5G, retaining more than 90% of the initial performance and thus validating our approach. Our findings represent a breakthrough in the construction of stable PSCs with minimized nonradiative losses.

3.
J Phys Chem Lett ; 9(7): 1703-1711, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29537271

RESUMO

Lead halide materials have seen a recent surge of interest from the photovoltaics community following the observation of surprisingly high photovoltaic performance, with optoelectronic properties similar to GaAs. This begs the question: What is the limit for the efficiency of these materials? It has been known that under 1-sun illumination the efficiency limit of crystalline silicon is ∼29%, despite the Shockley-Queisser (SQ) limit for its bandgap being ∼33%: the discrepancy is due to strong Auger recombination. In this article, we show that methyl ammonium lead iodide (MAPbI3) likewise has a larger than expected Auger coefficient. Auger nonradiative recombination decreases the theoretical external luminescence efficiency to ∼95% at open-circuit conditions. The Auger penalty is much reduced at the operating point where the carrier density is less, producing an oddly high fill factor of ∼90.4%. This compensates the Auger penalty and leads to a power conversion efficiency of 30.5%, close to ideal for the MAPbI3 bandgap.

4.
ACS Energy Lett ; 2(2): 476-480, 2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-28261671

RESUMO

After 60 years of research, silicon solar cell efficiency saturated close to the theoretical limit, and radically new approaches are needed to further improve the efficiency. The use of tandem systems raises this theoretical power conversion efficiency limit from 34% to 45%. We present the advantageous spectral stability of using voltage-matched tandem solar cells with respect to their traditional series-connected counterparts and experimentally demonstrate how singlet fission can be used to produce simple voltage-matched tandems. Our singlet fission silicon-pentacene tandem solar cell shows efficient photocurrent addition. This allows the tandem system to benefit from carrier multiplication and to produce an external quantum efficiency exceeding 100% at the main absorption peak of pentacene.

5.
Nat Commun ; 7: 12555, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27595974

RESUMO

Lead-halide perovskites have triggered the latest breakthrough in photovoltaic technology. Despite the great promise shown by these materials, their instability towards water even in the presence of low amounts of moisture makes them, a priori, unsuitable for their direct use as light harvesters in aqueous solution for the production of hydrogen through water splitting. Here, we present a simple method that enables their use in photoelectrocatalytic hydrogen evolution while immersed in an aqueous solution. Field's metal, a fusible InBiSn alloy, is used to efficiently protect the perovskite from water while simultaneously allowing the photogenerated electrons to reach a Pt hydrogen evolution catalyst. A record photocurrent density of -9.8 mA cm(-2) at 0 V versus RHE with an onset potential as positive as 0.95±0.03 V versus RHE is obtained. The photoelectrodes show remarkable stability retaining more than 80% of their initial photocurrent for ∼1 h under continuous illumination.

6.
Science ; 351(6280): 1430-3, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-27013728

RESUMO

Lead-halide perovskites have emerged as high-performance photovoltaic materials. We mapped the propagation of photogenerated luminescence and charges from a local photoexcitation spot in thin films of lead tri-iodide perovskites. We observed light emission at distances of ≥50 micrometers and found that the peak of the internal photon spectrum red-shifts from 765 to ≥800 nanometers. We used a lateral-contact solar cell with selective electron- and hole-collecting contacts and observed that charge extraction for photoexcitation >50 micrometers away from the contacts arose from repeated recycling between photons and electron-hole pairs. Thus, energy transport is not limited by diffusive charge transport but can occur over long distances through multiple absorption-diffusion-emission events. This process creates high excitation densities within the perovskite layer and allows high open-circuit voltages.

7.
Nat Commun ; 7: 13941, 2016 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-28008917

RESUMO

In lead halide perovskite solar cells, there is at least one recycling event of electron-hole pair to photon to electron-hole pair at open circuit under solar illumination. This can lead to a significant reduction in the external photoluminescence yield from the internal yield. Here we show that, for an internal yield of 70%, we measure external yields as low as 15% in planar films, where light out-coupling is inefficient, but observe values as high as 57% in films on textured substrates that enhance out-coupling. We analyse in detail how externally measured rate constants and photoluminescence efficiencies relate to internal recombination processes under photon recycling. For this, we study the photo-excited carrier dynamics and use a rate equation to relate radiative and non-radiative recombination events to measured photoluminescence efficiencies. We conclude that the use of textured active layers has the ability to improve power conversion efficiencies for both LEDs and solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA