Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 152(3): 633-41, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23374354

RESUMO

Germline determinants of gene expression in tumors are infrequently studied due to the complexity of transcript regulation caused by somatically acquired alterations. We performed expression quantitative trait locus (eQTL)-based analyses using the multi-level information provided in The Cancer Genome Atlas (TCGA). Of the factors we measured, cis-acting eQTLs accounted for 1.2% of the total variation of tumor gene expression, while somatic copy-number alteration and CpG methylation accounted for 7.3% and 3.3%, respectively. eQTL analyses of 15 previously reported breast cancer risk loci resulted in the discovery of three variants that are significantly associated with transcript levels (false discovery rate [FDR] < 0.1). Our trans-based analysis identified an additional three risk loci to act through ESR1, MYC, and KLF4. These findings provide a more comprehensive picture of gene expression determinants in breast cancer as well as insights into the underlying biology of breast cancer risk loci.


Assuntos
Neoplasias da Mama/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Humanos , Fator 4 Semelhante a Kruppel
2.
Genome Res ; 32(3): 558-568, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34987055

RESUMO

Patterns of sequencing coverage along a bacterial genome-summarized by a peak-to-trough ratio (PTR)-have been shown to accurately reflect microbial growth rates, revealing a new facet of microbial dynamics and host-microbe interactions. Here, we introduce Compute PTR (CoPTR): a tool for computing PTRs from complete reference genomes and assemblies. Using simulations and data from growth experiments in simple and complex communities, we show that CoPTR is more accurate than the current state of the art while also providing more PTR estimates overall. We further develop a theory formalizing a biological interpretation for PTRs. Using a reference database of 2935 species, we applied CoPTR to a case-control study of 1304 metagenomic samples from 106 individuals with inflammatory bowel disease. We show that growth rates are personalized, are only loosely correlated with relative abundances, and are associated with disease status. We conclude by showing how PTRs can be combined with relative abundances and metabolomics to investigate their effect on the microbiome.


Assuntos
Metagenômica , Microbiota , Estudos de Casos e Controles , Genoma Bacteriano , Humanos , Metagenoma , Microbiota/genética
3.
Mol Biol Evol ; 39(11)2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36282896

RESUMO

The inference of genome rearrangement events has been extensively studied, as they play a major role in molecular evolution. However, probabilistic evolutionary models that explicitly imitate the evolutionary dynamics of such events, as well as methods to infer model parameters, are yet to be fully utilized. Here, we developed a probabilistic approach to infer genome rearrangement rate parameters using an Approximate Bayesian Computation (ABC) framework. We developed two genome rearrangement models, a basic model, which accounts for genomic changes in gene order, and a more sophisticated one which also accounts for changes in chromosome number. We characterized the ABC inference accuracy using simulations and applied our methodology to both prokaryotic and eukaryotic empirical datasets. Knowledge of genome-rearrangement rates can help elucidate their role in evolution as well as help simulate genomes with evolutionary dynamics that reflect empirical genomes.


Assuntos
Evolução Molecular , Genoma , Teorema de Bayes , Simulação por Computador , Genômica
4.
Brief Bioinform ; 22(4)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33003198

RESUMO

Despite impressive improvement in the next-generation sequencing technology, reliable detection of indels is still a difficult endeavour. Recognition of true indels is of prime importance in many applications, such as personalized health care, disease genomics and population genetics. Recently, advanced machine learning techniques have been successfully applied to classification problems with large-scale data. In this paper, we present SICaRiO, a gradient boosting classifier for the reliable detection of true indels, trained with the gold-standard dataset from 'Genome in a Bottle' (GIAB) consortium. Our filtering scheme significantly improves the performance of each variant calling pipeline used in GIAB and beyond. SICaRiO uses genomic features that can be computed from publicly available resources, i.e. it does not require sequencing pipeline-specific information (e.g. read depth). This study also sheds lights on prior genomic contexts responsible for the erroneous calling of indels made by sequencing pipelines. We have compared prediction difficulty for three categories of indels over different sequencing pipelines. We have also ranked genomic features according to their predictivity in determining false positives.


Assuntos
Bases de Dados de Ácidos Nucleicos , Sequenciamento de Nucleotídeos em Larga Escala , Mutação INDEL , Aprendizado de Máquina , Software
5.
PLoS Genet ; 16(9): e1009015, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32956347

RESUMO

Evidence from both GWAS and clinical observation has suggested that certain psychiatric, metabolic, and autoimmune diseases are heterogeneous, comprising multiple subtypes with distinct genomic etiologies and Polygenic Risk Scores (PRS). However, the presence of subtypes within many phenotypes is frequently unknown. We present CLiP (Correlated Liability Predictors), a method to detect heterogeneity in single GWAS cohorts. CLiP calculates a weighted sum of correlations between SNPs contributing to a PRS on the case/control liability scale. We demonstrate mathematically and through simulation that among i.i.d. homogeneous cases generated by a liability threshold model, significant anti-correlations are expected between otherwise independent predictors due to ascertainment on the hidden liability score. In the presence of heterogeneity from distinct etiologies, confounding by covariates, or mislabeling, these correlation patterns are altered predictably. We further extend our method to two additional association study designs: CLiP-X for quantitative predictors in applications such as transcriptome-wide association, and CLiP-Y for quantitative phenotypes, where there is no clear distinction between cases and controls. Through simulations, we demonstrate that CLiP and its extensions reliably distinguish between homogeneous and heterogeneous cohorts when the PRS explains as low as 3% of variance on the liability scale and cohorts comprise 50, 000 - 100, 000 samples, an increasingly practical size for modern GWAS. We apply CLiP to heterogeneity detection in schizophrenia cohorts totaling > 50, 000 cases and controls collected by the Psychiatric Genomics Consortium. We observe significant heterogeneity in mega-analysis of the combined PGC data (p-value 8.54 × 0-4), as well as in individual cohorts meta-analyzed using Fisher's method (p-value 0.03), based on significantly associated variants. We also apply CLiP-Y to detect heterogeneity in neuroticism in over 10, 000 individuals from the UK Biobank and detect heterogeneity with a p-value of 1.68 × 10-9. Scores were not significantly reduced when partitioning by known subclusters ("Depression" and "Worry"), suggesting that these factors are not the primary source of observed heterogeneity.


Assuntos
Variação Genética/genética , Estudo de Associação Genômica Ampla/métodos , Herança Multifatorial/genética , Algoritmos , Transtorno Bipolar/genética , Estudos de Casos e Controles , Bases de Dados Genéticas , Transtorno Depressivo Maior/genética , Feminino , Heterogeneidade Genética , Predisposição Genética para Doença/genética , Humanos , Masculino , Modelos Teóricos , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Esquizofrenia/genética
6.
PLoS Genet ; 16(10): e1009158, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33095765

RESUMO

[This corrects the article DOI: 10.1371/journal.pgen.1009015.].

7.
Am J Perinatol ; 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37748506

RESUMO

Preterm birth is a major cause of neonatal morbidity and mortality, but its etiology and risk factors are poorly understood. We undertook a scoping review to illustrate the breadth of risk factors for preterm birth that have been reported in the literature. We conducted a search in the PubMed database for articles published in the previous 5 years. We determined eligibility for this scoping review by screening titles and abstracts, followed by full-text review. We extracted odds ratios and other measures of association for each identified risk factor in the articles. A total of 2,509 unique articles were identified from the search, of which 314 were eligible for inclusion in our final analyses. We summarized risk factors and their relative impacts in the following categories: Activity, Psychological, Medical History, Toxicology, Genetics, and Vaginal Microbiome. Many risk factors for preterm birth have been reported. It is challenging to synthesize findings given the multitude of isolated risk factors that have been studied, inconsistent definitions of risk factors and outcomes, and use of different covariates in analyses. Novel methods of analyzing large datasets may promote a more comprehensive understanding of the etiology of preterm birth and ability to predict the outcome. KEY POINTS: · Preterm birth is difficult to predict.. · Preterm birth has many diverse risk factors.. · Holistic approaches may yield new insights..

8.
Am J Hum Genet ; 105(2): 317-333, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31256878

RESUMO

Sequencing ancient DNA can offer direct probing of population history. Yet, such data are commonly analyzed with standard tools that assume DNA samples are all contemporary. We present DyStruct, a model and inference algorithm for inferring shared ancestry from temporally sampled genotype data. DyStruct explicitly incorporates temporal dynamics by modeling individuals as mixtures of unobserved populations whose allele frequencies drift over time. We develop an efficient inference algorithm for our model using stochastic variational inference. On simulated data, we show that DyStruct outperforms the current state of the art when individuals are sampled over time. Using a dataset of 296 modern and 80 ancient samples, we demonstrate DyStruct is able to capture a well-supported admixture event of steppe ancestry into modern Europe. We further apply DyStruct to a genome-wide dataset of 2,067 modern and 262 ancient samples used to study the origin of farming in the Near East. We show that DyStruct provides new insight into population history when compared with alternate approaches, within feasible run time.


Assuntos
Algoritmos , Variação Genética , Genética Populacional , Modelos Genéticos , Modelos Estatísticos , Grupos Populacionais/genética , Europa (Continente) , Frequência do Gene , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Oriente Médio , Fatores de Tempo
9.
Nat Methods ; 16(7): 627-632, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31182859

RESUMO

A major challenge of analyzing the compositional structure of microbiome data is identifying its potential origins. Here, we introduce fast expectation-maximization microbial source tracking (FEAST), a ready-to-use scalable framework that can simultaneously estimate the contribution of thousands of potential source environments in a timely manner, thereby helping unravel the origins of complex microbial communities ( https://github.com/cozygene/FEAST ). The information gained from FEAST may provide insight into quantifying contamination, tracking the formation of developing microbial communities, as well as distinguishing and characterizing bacteria-related health conditions.


Assuntos
Bactérias/isolamento & purificação , Microbiota , Adulto , Microbioma Gastrointestinal , Humanos , Lactente , Unidades de Terapia Intensiva
10.
Bioinformatics ; 36(1): 33-40, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31173059

RESUMO

MOTIVATION: The human leukocyte antigen (HLA) locus plays a critical role in tissue compatibility and regulates the host response to many diseases, including cancers and autoimmune di3orders. Recent improvements in the quality and accessibility of next-generation sequencing have made HLA typing from standard short-read data practical. However, this task remains challenging given the high level of polymorphism and homology between HLA genes. HLA typing from RNA sequencing is further complicated by post-transcriptional modifications and bias due to amplification. RESULTS: Here, we present arcasHLA: a fast and accurate in silico tool that infers HLA genotypes from RNA-sequencing data. Our tool outperforms established tools on the gold-standard benchmark dataset for HLA typing in terms of both accuracy and speed, with an accuracy rate of 100% at two-field resolution for Class I genes, and over 99.7% for Class II. Furthermore, we evaluate the performance of our tool on a new biological dataset of 447 single-end total RNA samples from nasopharyngeal swabs, and establish the applicability of arcasHLA in metatranscriptome studies. AVAILABILITY AND IMPLEMENTATION: arcasHLA is available at https://github.com/RabadanLab/arcasHLA. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Antígenos HLA , Antígenos de Histocompatibilidade Classe I , Análise de Sequência de RNA , Alelos , Antígenos HLA/genética , Sequenciamento de Nucleotídeos em Larga Escala , Antígenos de Histocompatibilidade Classe I/classificação , Teste de Histocompatibilidade/métodos , Humanos , Análise de Sequência de RNA/métodos
11.
PLoS Comput Biol ; 16(5): e1007917, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32469867

RESUMO

Dynamic changes in microbial communities play an important role in human health and disease. Specifically, deciphering how microbial species in a community interact with each other and their environment can elucidate mechanisms of disease, a problem typically investigated using tools from community ecology. Yet, such methods require measurements of absolute densities, whereas typical datasets only provide estimates of relative abundances. Here, we systematically investigate models of microbial dynamics in the simplex of relative abundances. We derive a new nonlinear dynamical system for microbial dynamics, termed "compositional" Lotka-Volterra (cLV), unifying approaches using generalized Lotka-Volterra (gLV) equations from community ecology and compositional data analysis. On three real datasets, we demonstrate that cLV recapitulates interactions between relative abundances implied by gLV. Moreover, we show that cLV is as accurate as gLV in forecasting microbial trajectories in terms of relative abundances. We further compare cLV to two other models of relative abundance dynamics motivated by common assumptions in the literature-a linear model in a log-ratio transformed space, and a linear model in the space of relative abundances-and provide evidence that cLV more accurately describes community trajectories over time. Finally, we investigate when information about direct effects can be recovered from relative data that naively provide information about only indirect effects. Our results suggest that strong effects may be recoverable from relative data, but more subtle effects are challenging to identify.


Assuntos
Microbiota , Algoritmos , Clostridioides difficile/fisiologia , Modelos Biológicos , Estudo de Prova de Conceito
12.
PLoS Genet ; 13(7): e1006916, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28715421

RESUMO

Genome-wide association studies (GWAS) have identified hundreds of SNPs responsible for variation in human quantitative traits. However, genome-wide-significant associations often fail to replicate across independent cohorts, in apparent inconsistency with their apparent strong effects in discovery cohorts. This limited success of replication raises pervasive questions about the utility of the GWAS field. We identify all 332 studies of quantitative traits from the NHGRI-EBI GWAS Database with attempted replication. We find that the majority of studies provide insufficient data to evaluate replication rates. The remaining papers replicate significantly worse than expected (p < 10-14), even when adjusting for regression-to-the-mean of effect size between discovery- and replication-cohorts termed the Winner's Curse (p < 10-16). We show this is due in part to misreporting replication cohort-size as a maximum number, rather than per-locus one. In 39 studies accurately reporting per-locus cohort-size for attempted replication of 707 loci in samples with similar ancestry, replication rate matched expectation (predicted 458, observed 457, p = 0.94). In contrast, ancestry differences between replication and discovery (13 studies, 385 loci) cause the most highly-powered decile of loci to replicate worse than expected, due to difference in linkage disequilibrium.


Assuntos
Replicação do DNA , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Bases de Dados Factuais , Genoma Humano , Humanos , Modelos Lineares , Desequilíbrio de Ligação , Modelos Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único
13.
PLoS Genet ; 13(4): e1006644, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28376121

RESUMO

The Ashkenazi Jewish (AJ) population is important in genetics due to its high rate of Mendelian disorders. AJ appeared in Europe in the 10th century, and their ancestry is thought to comprise European (EU) and Middle-Eastern (ME) components. However, both the time and place of admixture are subject to debate. Here, we attempt to characterize the AJ admixture history using a careful application of new and existing methods on a large AJ sample. Our main approach was based on local ancestry inference, in which we first classified each AJ genomic segment as EU or ME, and then compared allele frequencies along the EU segments to those of different EU populations. The contribution of each EU source was also estimated using GLOBETROTTER and haplotype sharing. The time of admixture was inferred based on multiple statistics, including ME segment lengths, the total EU ancestry per chromosome, and the correlation of ancestries along the chromosome. The major source of EU ancestry in AJ was found to be Southern Europe (≈60-80% of EU ancestry), with the rest being likely Eastern European. The inferred admixture time was ≈30 generations ago, but multiple lines of evidence suggest that it represents an average over two or more events, pre- and post-dating the founder event experienced by AJ in late medieval times. The time of the pre-bottleneck admixture event, which was likely Southern European, was estimated to ≈25-50 generations ago.


Assuntos
Genética Populacional , Judeus/genética , População Branca/genética , Europa (Continente) , Feminino , Haplótipos , Humanos , Desequilíbrio de Ligação , Masculino , Polimorfismo de Nucleotídeo Único/genética
14.
Nature ; 498(7453): 220-3, 2013 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-23665959

RESUMO

Congenital heart disease (CHD) is the most frequent birth defect, affecting 0.8% of live births. Many cases occur sporadically and impair reproductive fitness, suggesting a role for de novo mutations. Here we compare the incidence of de novo mutations in 362 severe CHD cases and 264 controls by analysing exome sequencing of parent-offspring trios. CHD cases show a significant excess of protein-altering de novo mutations in genes expressed in the developing heart, with an odds ratio of 7.5 for damaging (premature termination, frameshift, splice site) mutations. Similar odds ratios are seen across the main classes of severe CHD. We find a marked excess of de novo mutations in genes involved in the production, removal or reading of histone 3 lysine 4 (H3K4) methylation, or ubiquitination of H2BK120, which is required for H3K4 methylation. There are also two de novo mutations in SMAD2, which regulates H3K27 methylation in the embryonic left-right organizer. The combination of both activating (H3K4 methylation) and inactivating (H3K27 methylation) chromatin marks characterizes 'poised' promoters and enhancers, which regulate expression of key developmental genes. These findings implicate de novo point mutations in several hundreds of genes that collectively contribute to approximately 10% of severe CHD.


Assuntos
Cardiopatias/congênito , Cardiopatias/genética , Histonas/metabolismo , Adulto , Estudos de Casos e Controles , Criança , Cromatina/química , Cromatina/metabolismo , Análise Mutacional de DNA , Elementos Facilitadores Genéticos/genética , Exoma/genética , Feminino , Genes Controladores do Desenvolvimento/genética , Cardiopatias/metabolismo , Histonas/química , Humanos , Lisina/química , Lisina/metabolismo , Masculino , Metilação , Mutação , Razão de Chances , Regiões Promotoras Genéticas/genética
15.
PLoS Genet ; 12(6): e1006091, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27310603

RESUMO

Missing data are an unavoidable component of modern statistical genetics. Different array or sequencing technologies cover different single nucleotide polymorphisms (SNPs), leading to a complicated mosaic pattern of missingness where both individual genotypes and entire SNPs are sporadically absent. Such missing data patterns cannot be ignored without introducing bias, yet cannot be inferred exclusively from nonmissing data. In genome-wide association studies, the accepted solution to missingness is to impute missing data using external reference haplotypes. The resulting probabilistic genotypes may be analyzed in the place of genotype calls. A general-purpose paradigm, called Multiple Imputation (MI), is known to model uncertainty in many contexts, yet it is not widely used in association studies. Here, we undertake a systematic evaluation of existing imputed data analysis methods and MI. We characterize biases related to uncertainty in association studies, and find that bias is introduced both at the imputation level, when imputation algorithms generate inconsistent genotype probabilities, and at the association level, when analysis methods inadequately model genotype uncertainty. We find that MI performs at least as well as existing methods or in some cases much better, and provides a straightforward paradigm for adapting existing genotype association methods to uncertain data.


Assuntos
Algoritmos , Estudo de Associação Genômica Ampla/métodos , Estatística como Assunto/métodos , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único/genética
16.
Hum Genet ; 137(4): 343-355, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29705978

RESUMO

While increasingly large reference panels for genome-wide imputation have been recently made available, the degree to which imputation accuracy can be enhanced by population-specific reference panels remains an open question. Here, we sequenced at full-depth (≥ 30×), across two platforms (Illumina X Ten and Complete Genomics, Inc.), a moderately large (n = 738) cohort of samples drawn from the Ashkenazi Jewish population. We developed a series of quality control steps to optimize sensitivity, specificity, and comprehensiveness of variant calls in the reference panel, and then tested the accuracy of imputation against target cohorts drawn from the same population. Quality control (QC) thresholds for the Illumina X Ten platform were identified that permitted highly accurate calling of single nucleotide variants across 94% of the genome. QC procedures also identified numerous regions that are poorly mapped using current reference or alternate assemblies. After stringent QC, the population-specific reference panel produced more accurate and comprehensive imputation results relative to publicly available, large cosmopolitan reference panels, especially in the range of rare variants that may be most critical to further progress in mapping of complex phenotypes. The population-specific reference panel also permitted enhanced filtering of clinically irrelevant variants from personal genomes.


Assuntos
Variação Genética/genética , Judeus/genética , Padrões de Referência , Sequenciamento Completo do Genoma/normas , Genoma Humano/genética , Estudo de Associação Genômica Ampla , Genótipo , Haplótipos/genética , Humanos
17.
Am J Hum Genet ; 97(6): 775-89, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26581902

RESUMO

The rate at which human genomes mutate is a central biological parameter that has many implications for our ability to understand demographic and evolutionary phenomena. We present a method for inferring mutation and gene-conversion rates by using the number of sequence differences observed in identical-by-descent (IBD) segments together with a reconstructed model of recent population-size history. This approach is robust to, and can quantify, the presence of substantial genotyping error, as validated in coalescent simulations. We applied the method to 498 trio-phased sequenced Dutch individuals and inferred a point mutation rate of 1.66 × 10(-8) per base per generation and a rate of 1.26 × 10(-9) for <20 bp indels. By quantifying how estimates varied as a function of allele frequency, we inferred the probability that a site is involved in non-crossover gene conversion as 5.99 × 10(-6). We found that recombination does not have observable mutagenic effects after gene conversion is accounted for and that local gene-conversion rates reflect recombination rates. We detected a strong enrichment of recent deleterious variation among mismatching variants found within IBD regions and observed summary statistics of local sharing of IBD segments to closely match previously proposed metrics of background selection; however, we found no significant effects of selection on our mutation-rate estimates. We detected no evidence of strong variation of mutation rates in a number of genomic annotations obtained from several recent studies. Our analysis suggests that a mutation-rate estimate higher than that reported by recent pedigree-based studies should be adopted in the context of DNA-based demographic reconstruction.


Assuntos
Genoma Humano , Mutação em Linhagem Germinativa , Modelos Genéticos , Taxa de Mutação , Alelos , Frequência do Gene , Haplótipos , Humanos , Mutação INDEL , Modelos Lineares , Recombinação Genética
18.
Gastroenterology ; 151(4): 710-723.e2, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27377463

RESUMO

BACKGROUND & AIMS: Crohn's disease (CD) has the highest prevalence in Ashkenazi Jewish populations. We sought to identify rare, CD-associated frameshift variants of high functional and statistical effects. METHODS: We performed exome sequencing and array-based genotype analyses of 1477 Ashkenazi Jewish individuals with CD and 2614 Ashkenazi Jewish individuals without CD (controls). To validate our findings, we performed genotype analyses of an additional 1515 CD cases and 7052 controls for frameshift mutations in the colony-stimulating factor 2-receptor ß common subunit gene (CSF2RB). Intestinal tissues and blood samples were collected from patients with CD; lamina propria leukocytes were isolated and expression of CSF2RB and granulocyte-macrophage colony-stimulating factor-responsive cells were defined by adenomatous polyposis coli (APC) time-of-flight mass cytometry (CyTOF analysis). Variants of CSF2RB were transfected into HEK293 cells and the expression and functions of gene products were compared. RESULTS: In the discovery cohort, we associated CD with a frameshift mutation in CSF2RB (P = 8.52 × 10(-4)); the finding was validated in the replication cohort (combined P = 3.42 × 10(-6)). Incubation of intestinal lamina propria leukocytes with granulocyte-macrophage colony-stimulating factor resulted in high levels of phosphorylation of signal transducer and activator of transcription (STAT5) and lesser increases in phosphorylation of extracellular signal-regulated kinase and AK straining transforming (AKT). Cells co-transfected with full-length and mutant forms of CSF2RB had reduced pSTAT5 after stimulation with granulocyte-macrophage colony-stimulating factor, compared with cells transfected with control CSF2RB, indicating a dominant-negative effect of the mutant gene. Monocytes from patients with CD who were heterozygous for the frameshift mutation (6% of CD cases analyzed) had reduced responses to granulocyte-macrophage colony-stimulating factor and markedly decreased activity of aldehyde dehydrogenase; activity of this enzyme has been associated with immune tolerance. CONCLUSIONS: In a genetic analysis of Ashkenazi Jewish individuals, we associated CD with a frameshift mutation in CSF2RB. Intestinal monocytes from carriers of this mutation had reduced responses to granulocyte-macrophage colony-stimulating factor, providing an additional mechanism for alterations to the innate immune response in individuals with CD.


Assuntos
Doença de Crohn/genética , Subunidade beta Comum dos Receptores de Citocinas/genética , Mutação da Fase de Leitura , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Judeus/genética , Estudos de Casos e Controles , Doença de Crohn/etnologia , Doença de Crohn/patologia , Feminino , Humanos , Intestinos/citologia , Intestinos/patologia , Masculino , Monócitos/metabolismo , Fatores de Risco , Transdução de Sinais/genética
19.
PLoS Genet ; 10(9): e1004587, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25210734

RESUMO

Associations between the level of single transcripts and single corresponding genetic variants, expression single nucleotide polymorphisms (eSNPs), have been extensively studied and reported. However, most expression traits are complex, involving the cooperative action of multiple SNPs at different loci affecting multiple genes. Finding these cooperating eSNPs by exhaustive search has proven to be statistically challenging. In this paper we utilized availability of sequencing data with transcriptional profiles in the same cohorts to identify two kinds of usual suspects: eSNPs that alter coding sequences or eSNPs within the span of transcription factors (TFs). We utilize a computational framework for considering triplets, each comprised of a SNP and two associated genes. We examine pairs of triplets with such cooperating source eSNPs that are both associated with the same pair of target genes. We characterize such quartets through their genomic, topological and functional properties. We establish that this regulatory structure of cooperating quartets is frequent in real data, but is rarely observed in permutations. eSNP sources are mostly located on different chromosomes and away from their targets. In the majority of quartets, SNPs affect the expression of the two gene targets independently of one another, suggesting a mutually independent rather than a directionally dependent effect. Furthermore, the directions in which the minor allele count of the SNP affects gene expression within quartets are consistent, so that the two source eSNPs either both have the same effect on the target genes or both affect one gene in the opposite direction to the other. Same-effect eSNPs are observed more often than expected by chance. Cooperating quartets reported here in a human system might correspond to bi-fans, a known network motif of four nodes previously described in model organisms. Overall, our analysis offers insights regarding the fine motif structure of human regulatory networks.


Assuntos
Redes Reguladoras de Genes/genética , Polimorfismo de Nucleotídeo Único/genética , Estrutura Terciária de Proteína/genética , Alelos , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Humanos , Fatores de Transcrição/genética , Transcrição Gênica/genética
20.
Hum Mol Genet ; 23(22): 6088-95, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24943592

RESUMO

Genome-wide association studies (GWAS) in schizophrenia have focused on additive allelic effects to identify disease risk loci. In order to examine potential recessive effects, we applied a novel approach to identify regions of excess homozygosity in an ethnically homogenous cohort: 904 schizophrenia cases and 1640 controls drawn from the Ashkenazi Jewish (AJ) population. Genome-wide examination of runs of homozygosity identified an excess in cases localized to the major histocompatibility complex (MHC). To refine this signal, we used the recently developed GERMLINE algorithm to identify chromosomal segments shared identical-by-descent (IBD) and compared homozygosity at such segments in cases and controls. We found a significant excess of homozygosity in schizophrenia cases compared with controls in the MHC (P-value = 0.003). An independent replication cohort of 548 schizophrenia cases from Japan and 542 matched healthy controls demonstrated similar effects. The strongest case-control recessive effects (P = 8.81 × 10(-8)) were localized to a 53-kb region near HLA-A, in a segment encompassing three poorly annotated genes, TRIM10, TRIM15 and TRIM40. At the same time, an adjacent segment in the Class I MHC demonstrated clear additive effects on schizophrenia risk, demonstrating the complexity of association in the MHC and the ability of our IBD approach to refine localization of broad signals derived from conventional GWAS. In sum, homozygosity in the classical MHC region appears to convey significant risk for schizophrenia, consistent with the ecological literature suggesting that homozygosity at the MHC locus may be associated with vulnerability to disease.


Assuntos
Antígenos HLA-A/genética , Esquizofrenia/genética , Povo Asiático/genética , Estudos de Casos e Controles , Proteínas de Ligação a DNA/genética , Estudo de Associação Genômica Ampla , Genótipo , Antígenos de Histocompatibilidade/genética , Homozigoto , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Japão , Complexo Principal de Histocompatibilidade , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA