RESUMO
The presence of PFAS in drinking water may pose a serious threat to human health. This study aims to determine the levels of these compounds and their precursors in water samples from a drinking water treatment plant (DWTP) located in l'Ampolla (Spain) and to assess their fate. Additionally, ten Spanish bottled waters were analyzed to compare the occurrence of PFAS in the mentioned matrices and in drinking water. Off-line solid phase extraction (SPE) followed by liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was applied to determine 26 PFAS and PFAS precursors after a total oxidizable precursor assay. The analytical method presents low quantification limits (0.25-5 ng/L). A total PFAS concentration of up to 16 ng/L in all the DWTP samples was obtained, and 6:2 FTS was the only precursor detected. Results are close to the quantification limits, resulting in a high degree of uncertainty, and for this, it is difficult to evaluate the DWTP PFAS removal efficiency. Regarding bottled water, total PFAS concentration found was up to 12 ng/L in one of ten samples, with no precursors detected. Exposure assessment revealed that there is no risk associated with the ingestion of the samples analyzed. Moreover, there were no differences in terms of risk between drinking water from l'Ampolla DWTP and bottled water.
Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Água Potável/química , Espanha , Poluentes Químicos da Água/análise , Medição de Risco , Humanos , Fluorocarbonos/análise , Extração em Fase Sólida , Espectrometria de Massas em Tandem , Monitoramento AmbientalRESUMO
The objective of drinking water treatment plants (DWTP) is to supply the population with tap water that is in optimal condition and in compliance with water quality regulations. In the DWTP of L'Ampolla (Tarragona, Spain), slightly high values of gross alpha activity and the amount of salts in the raw water have been observed. Conventional treatment has reduced these levels only minimally. This study tested a tertiary treatment based on reverse osmosis is tested in an industrial pilot plant (240 m3/day) The efficiency of this pilot plant to reduce the gross alpha and beta activities and the activity of some individual radioisotopes (U(238), U(234), U(235) and Ra(226)) was tested. Results showed that the elimination of alpha emitters was greater than 90%, whereas the elimination of beta emitters was about 35%. Overall, the data provided evidence that the pilot plant is effective for removing different radionuclides that can be present in the incoming water treated. Therefore, tertiary treatment based on reverse osmosis has a positive effect in water quality.