Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Ther ; 32(5): 1497-1509, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429928

RESUMO

The hallmark of epidermolysis bullosa (EB) is fragile attachment of epithelia due to genetic variants in cell adhesion genes. We describe 16 EB patients treated in the ear, nose, and throat department of a tertiary pediatric hospital linked to the United Kingdom's national EB unit between 1992 and 2023. Patients suffered a high degree of morbidity and mortality from laryngotracheal stenosis. Variants in laminin subunit alpha-3 (LAMA3) were found in 10/15 patients where genotype was available. LAMA3 encodes a subunit of the laminin-332 heterotrimeric extracellular matrix protein complex and is expressed by airway epithelial basal stem cells. We investigated the benefit of restoring wild-type LAMA3 expression in primary EB patient-derived basal cell cultures. EB basal cells demonstrated weak adhesion to cell culture substrates, but could otherwise be expanded similarly to non-EB basal cells. In vitro lentiviral overexpression of LAMA3A in EB basal cells enabled them to differentiate in air-liquid interface cultures, producing cilia with normal ciliary beat frequency. Moreover, transduction restored cell adhesion to levels comparable to a non-EB donor culture. These data provide proof of concept for a combined cell and gene therapy approach to treat airway disease in LAMA3-affected EB.


Assuntos
Adesão Celular , Epidermólise Bolhosa , Laminina , Lentivirus , Humanos , Laminina/metabolismo , Laminina/genética , Epidermólise Bolhosa/genética , Epidermólise Bolhosa/metabolismo , Epidermólise Bolhosa/terapia , Epidermólise Bolhosa/patologia , Criança , Lentivirus/genética , Masculino , Feminino , Pré-Escolar , Terapia Genética/métodos , Vetores Genéticos/genética , Células Epiteliais/metabolismo , Células Cultivadas , Expressão Gênica , Adolescente , Lactente
2.
Nat Commun ; 15(1): 4653, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821942

RESUMO

Patient-derived xenograft (PDX) models are widely used in cancer research. To investigate the genomic fidelity of non-small cell lung cancer PDX models, we established 48 PDX models from 22 patients enrolled in the TRACERx study. Multi-region tumor sampling increased successful PDX engraftment and most models were histologically similar to their parent tumor. Whole-exome sequencing enabled comparison of tumors and PDX models and we provide an adapted mouse reference genome for improved removal of NOD scid gamma (NSG) mouse-derived reads from sequencing data. PDX model establishment caused a genomic bottleneck, with models often representing a single tumor subclone. While distinct tumor subclones were represented in independent models from the same tumor, individual PDX models did not fully recapitulate intratumor heterogeneity. On-going genomic evolution in mice contributed modestly to the genomic distance between tumors and PDX models. Our study highlights the importance of considering primary tumor heterogeneity when using PDX models and emphasizes the benefit of comprehensive tumor sampling.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Heterogeneidade Genética , Neoplasias Pulmonares , Camundongos Endogâmicos NOD , Camundongos SCID , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Animais , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Feminino , Sequenciamento do Exoma , Genômica/métodos , Masculino , Ensaios Antitumorais Modelo de Xenoenxerto , Xenoenxertos , Modelos Animais de Doenças , Idoso , Pessoa de Meia-Idade
3.
bioRxiv ; 2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38168428

RESUMO

Mutations in the NRF2-KEAP1 pathway are common in non-small cell lung cancer (NSCLC) and confer broad-spectrum therapeutic resistance, leading to poor outcomes. The cystine/glutamate antiporter, system xc-, is one of the >200 cytoprotective proteins controlled by NRF2, which can be non-invasively imaged by (S)-4-(3-18F-fluoropropyl)-l-glutamate ([18F]FSPG) positron emission tomography (PET). Through genetic and pharmacologic manipulation, we show that [18F]FSPG provides a sensitive and specific marker of NRF2 activation in advanced preclinical models of NSCLC. We validate imaging readouts with metabolomic measurements of system xc- activity and their coupling to intracellular glutathione concentration. A redox gene signature was measured in patients from the TRACERx 421 cohort, suggesting an opportunity for patient stratification prior to imaging. Furthermore, we reveal that system xc- is a metabolic vulnerability that can be therapeutically targeted for sustained tumour growth suppression in aggressive NSCLC. Our results establish [18F]FSPG as predictive marker of therapy resistance in NSCLC and provide the basis for the clinical evaluation of both imaging and therapeutic agents that target this important antioxidant pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA