Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Cell ; 149(2): 439-51, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22500806

RESUMO

The presence of diffuse morphogen gradients in tissues supports a view in which growth is locally homogenous. Here we challenge this view: we used a high-resolution quantitative approach to reveal significant growth variability among neighboring cells in the shoot apical meristem, the plant stem cell niche. This variability was strongly decreased in a mutant impaired in the microtubule-severing protein katanin. Major shape defects in the mutant could be related to a local decrease in growth heterogeneity. We show that katanin is required for the cell's competence to respond to the mechanical forces generated by growth. This provides the basis for a model in which microtubule dynamics allow the cell to respond efficiently to mechanical forces. This in turn can amplify local growth-rate gradients, yielding more heterogeneous growth and supporting morphogenesis.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Meristema/citologia , Adenosina Trifosfatases/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Homeostase , Katanina , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Microtúbulos/metabolismo , Modelos Biológicos , Morfogênese , Mutação , Células Vegetais/fisiologia , Brotos de Planta/citologia , Brotos de Planta/crescimento & desenvolvimento , Estresse Mecânico
2.
Development ; 149(11)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35575098

RESUMO

Boundary domains delimit and organize organ growth throughout plant development almost relentlessly, building plant architecture and morphogenesis. Boundary domains display reduced growth and orchestrate development of adjacent tissues in a non-cell-autonomous manner. How these two functions are achieved remains elusive despite the identification of several boundary-specific genes. Here, we show using morphometrics at the organ and cellular levels that leaf boundary domain development requires SPINDLY (SPY), an O-fucosyltransferase, to act as cell growth repressor. Furthermore, we show that SPY acts redundantly with the CUP-SHAPED COTYLEDON transcription factors (CUC2 and CUC3), which are major determinants of boundaries development. Accordingly, at the molecular level CUC2 and SPY repress a common set of genes involved in cell wall loosening, providing a molecular framework for the growth repression associated with boundary domains. Atomic force microscopy confirmed that young leaf boundary domain cells have stiffer cell walls than marginal outgrowth. This differential cell wall stiffness was reduced in spy mutant plants. Taken together, our data reveal a concealed CUC2 cell wall-associated gene network linking tissue patterning with cell growth and mechanics.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Redes Reguladoras de Genes , Mutação , Folhas de Planta/genética , Folhas de Planta/metabolismo
3.
Plant Physiol ; 194(1): 209-228, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37073485

RESUMO

Expansins facilitate cell expansion by mediating pH-dependent cell wall (CW) loosening. However, the role of expansins in controlling CW biomechanical properties in specific tissues and organs remains elusive. We monitored hormonal responsiveness and spatial specificity of expression and localization of expansins predicted to be the direct targets of cytokinin signaling in Arabidopsis (Arabidopsis thaliana). We found EXPANSIN1 (EXPA1) homogenously distributed throughout the CW of columella/lateral root cap, while EXPA10 and EXPA14 localized predominantly at 3-cell boundaries in the epidermis/cortex in various root zones. EXPA15 revealed cell-type-specific combination of homogenous vs. 3-cell boundaries localization. By comparing Brillouin frequency shift and AFM-measured Young's modulus, we demonstrated Brillouin light scattering (BLS) as a tool suitable for non-invasive in vivo quantitative assessment of CW viscoelasticity. Using both BLS and AFM, we showed that EXPA1 overexpression upregulated CW stiffness in the root transition zone (TZ). The dexamethasone-controlled EXPA1 overexpression induced fast changes in the transcription of numerous CW-associated genes, including several EXPAs and XYLOGLUCAN:XYLOGLUCOSYL TRANSFERASEs (XTHs), and associated with rapid pectin methylesterification determined by in situ Fourier-transform infrared spectroscopy in the root TZ. The EXPA1-induced CW remodeling is associated with the shortening of the root apical meristem, leading to root growth arrest. Based on our results, we propose that expansins control root growth by a delicate orchestration of CW biomechanical properties, possibly regulating both CW loosening and CW remodeling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Fenômenos Biomecânicos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Meristema/metabolismo , Hormônios/metabolismo , Parede Celular/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Development ; 146(10)2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31076488

RESUMO

How organisms attain their specific shapes and modify their growth patterns in response to environmental and chemical signals has been the subject of many investigations. Plant cells are at high turgor pressure and are surrounded by a rigid yet flexible cell wall, which is the primary determinant of plant growth and morphogenesis. Cellulose microfibrils, synthesized by plasma membrane-localized cellulose synthase complexes, are major tension-bearing components of the cell wall that mediate directional growth. Despite advances in understanding the genetic and biophysical regulation of morphogenesis, direct studies of cellulose biosynthesis and its impact on morphogenesis of different cell and tissue types are largely lacking. In this study, we took advantage of mutants of three primary cellulose synthase (CESA) genes that are involved in primary wall cellulose synthesis. Using field emission scanning electron microscopy, live cell imaging and biophysical measurements, we aimed to understand how the primary wall CESA complex acts during shoot apical meristem development. Our results indicate that cellulose biosynthesis impacts the mechanics and growth of the shoot apical meristem.


Assuntos
Arabidopsis/metabolismo , Parede Celular/enzimologia , Parede Celular/metabolismo , Glucosiltransferases/metabolismo , Meristema/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Meristema/enzimologia , Meristema/crescimento & desenvolvimento
5.
J Exp Bot ; 71(20): 6408-6417, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32816036

RESUMO

The rachis of most growing compound leaves observed in nature exhibits a stereotypical hook shape. In this study, we focus on the canonical case of Averrhoa carambola. Combining kinematics and mechanical investigation, we characterize this hook shape and shed light on its establishment and maintenance. We show quantitatively that the hook shape is a conserved bent zone propagating at constant velocity and constant distance from the apex throughout development. A simple mechanical test reveals non-zero intrinsic curvature profiles for the rachis during its growth, indicating that the hook shape is actively regulated. We show a robust spatial organization of growth, curvature, rigidity, and lignification, and their interplay. Regulatory processes appear to be specifically localized: in particular, differential growth occurs where the elongation rate drops. Finally, impairing the graviception of the leaf on a clinostat led to reduced hook curvature but not to its loss. Altogether, our results suggest a role for proprioception in the regulation of the leaf hook shape, likely mediated via mechanical strain.


Assuntos
Folhas de Planta , Fenômenos Biomecânicos , Morfogênese
6.
Plant J ; 88(3): 468-475, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27354251

RESUMO

A major challenge in plant systems biology is the development of robust, predictive multiscale models for organ growth. In this context it is important to bridge the gap between the, rather well-documented molecular scale and the organ scale by providing quantitative methods to study within-organ growth patterns. Here, we describe a simple method for the analysis of the evolution of growth patterns within rod-shaped organs that does not require adding markers at the organ surface. The method allows for the simultaneous analysis of root and hypocotyl growth, provides spatio-temporal information on curvature, growth anisotropy and relative elemental growth rate and can cope with complex organ movements. We demonstrate the performance of the method by documenting previously unsuspected complex growth patterns within the growing hypocotyl of the model species Arabidopsis thaliana during normal growth, after treatment with a growth-inhibiting drug or in a mechano-sensing mutant. The method is freely available as an intuitive and user-friendly Matlab application called KymoRod.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hipocótilo/genética , Hipocótilo/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
8.
Development ; 138(21): 4733-41, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21965608

RESUMO

Plant leaves and flowers are positioned along the stem in a regular pattern. This pattern, which is referred to as phyllotaxis, is generated through the precise emergence of lateral organs and is controlled by gradients of the plant hormone auxin. This pattern is actively maintained during stem growth through controlled cell proliferation and elongation. The formation of new organs is known to depend on changes in cell wall chemistry, in particular the demethylesterification of homogalacturonans, one of the main pectic components. Here we report a dual function for the homeodomain transcription factor BELLRINGER (BLR) in the establishment and maintenance of the phyllotactic pattern in Arabidopsis. BLR is required for the establishment of normal phyllotaxis through the exclusion of pectin methylesterase PME5 expression from the meristem dome and for the maintenance of phyllotaxis through the activation of PME5 in the elongating stem. These results provide new insights into the role of pectin demethylesterification in organ initiation and cell elongation and identify an important component of the regulation mechanism involved.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Regulação da Expressão Gênica de Plantas , Morfogênese/fisiologia , Proteínas Repressoras/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Hidrolases de Éster Carboxílico/genética , Parede Celular/metabolismo , Flores/anatomia & histologia , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação Enzimológica da Expressão Gênica , Ácidos Indolacéticos/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Meristema/ultraestrutura , Fenótipo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética
9.
Cell Surf ; 11: 100121, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38405175

RESUMO

Plant cell wall researchers were asked their view on what the major unanswered questions are in their field. This article summarises the feedback that was received from them in five questions. In this issue you can find equivalent syntheses for researchers working on bacterial, unicellular parasite and fungal systems.

10.
J Exp Bot ; 64(15): 4729-44, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23926314

RESUMO

Morphogenesis does not just require the correct expression of patterning genes; these genes must induce the precise mechanical changes necessary to produce a new form. Mechanical characterization of plant growth is not new; however, in recent years, new technologies and interdisciplinary collaborations have made it feasible in young tissues such as the shoot apex. Analysis of tissues where active growth and developmental patterning are taking place has revealed biologically significant variability in mechanical properties and has even suggested that mechanical changes in the tissue can feed back to direct morphogenesis. Here, an overview is given of the current understanding of the mechanical dynamics and its influence on cellular and developmental processes in the shoot apex. We are only starting to uncover the mechanical basis of morphogenesis, and many exciting questions remain to be answered.


Assuntos
Parede Celular/fisiologia , Brotos de Planta/fisiologia , Fenômenos Biomecânicos , Divisão Celular , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Mecanotransdução Celular , Meristema/crescimento & desenvolvimento , Meristema/fisiologia , Desenvolvimento Vegetal , Brotos de Planta/crescimento & desenvolvimento , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA