Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cardiovasc Diabetol ; 23(1): 153, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702769

RESUMO

BACKGROUND: Type 2 Diabetes Mellitus (T2DM) presents a significant healthcare challenge, with considerable economic ramifications. While blood glucose management and long-term metabolic target setting for home care and outpatient treatment follow established procedures, the approach for short-term targets during hospitalization varies due to a lack of clinical consensus. Our study aims to elucidate the impact of pre-hospitalization and intra-hospitalization glycemic indexes on in-hospital survival rates in individuals with T2DM, addressing this notable gap in the current literature. METHODS: In this pilot study involving 120 hospitalized diabetic patients, we used advanced machine learning and classical statistical methods to identify variables for predicting hospitalization outcomes. We first developed a 30-day mortality risk classifier leveraging AdaBoost-FAS, a state-of-the-art ensemble machine learning method for tabular data. We then analyzed the feature relevance to identify the key predictive variables among the glycemic and routine clinical variables the model bases its predictions on. Next, we conducted detailed statistical analyses to shed light on the relationship between such variables and mortality risk. Finally, based on such analyses, we introduced a novel index, the ratio of intra-hospital glycemic variability to pre-hospitalization glycemic mean, to better characterize and stratify the diabetic population. RESULTS: Our findings underscore the importance of personalized approaches to glycemic management during hospitalization. The introduced index, alongside advanced predictive modeling, provides valuable insights for optimizing patient care. In particular, together with in-hospital glycemic variability, it is able to discriminate between patients with higher and lower mortality rates, highlighting the importance of tightly controlling not only pre-hospital but also in-hospital glycemic levels. CONCLUSIONS: Despite the pilot nature and modest sample size, this study marks the beginning of exploration into personalized glycemic control for hospitalized patients with T2DM. Pre-hospital blood glucose levels and related variables derived from it can serve as biomarkers for all-cause mortality during hospitalization.


Assuntos
Biomarcadores , Glicemia , Diabetes Mellitus Tipo 2 , Mortalidade Hospitalar , Aprendizado de Máquina , Valor Preditivo dos Testes , Humanos , Projetos Piloto , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/mortalidade , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/diagnóstico , Biomarcadores/sangue , Masculino , Idoso , Feminino , Pessoa de Meia-Idade , Medição de Risco , Fatores de Risco , Fatores de Tempo , Causas de Morte , Prognóstico , Controle Glicêmico/mortalidade , Hospitalização
2.
Cancers (Basel) ; 16(16)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39199628

RESUMO

The evolution of laparoscopic right hemicolectomy, particularly with complete mesocolic excision (CME) and central vascular ligation (CVL), represents a significant advancement in colon cancer surgery. The CoDIG 1 and CoDIG 2 studies highlighted Italy's progressive approach, providing useful findings for optimizing patient outcomes and procedural efficiency. Within this context, accurately predicting postoperative length of stay (LoS) is crucial for improving resource allocation and patient care, yet its determination through machine learning techniques (MLTs) remains underexplored. This study aimed to harness MLTs to forecast the LoS for patients undergoing right hemicolectomy for colon cancer, using data from the CoDIG 1 (1224 patients) and CoDIG 2 (788 patients) studies. Multiple MLT algorithms, including random forest (RF) and support vector machine (SVM), were trained to predict LoS, with CoDIG 1 data used for internal validation and CoDIG 2 data for external validation. The RF algorithm showed a strong internal validation performance, achieving the best performances and a 0.92 ROC in predicting long-term stays (more than 5 days). External validation using the SVM model demonstrated 75% ROC values. Factors such as fast-track protocols, anastomosis, and drainage emerged as key predictors of LoS. Integrating MLTs into predicting postoperative LOS in colon cancer surgery offers a promising avenue for personalized patient care and improved surgical management. Using intraoperative features in the algorithm enables the profiling of a patient's stay based on the planned intervention. This issue is important for tailoring postoperative care to individual patients and for hospitals to effectively plan and manage long-term stays for more critical procedures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA