Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Am Chem Soc ; 139(13): 4935-4942, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28288511

RESUMO

Active centers in Cu/SSZ-13 selective catalytic reduction (SCR) catalysts have been recently identified as isolated Cu2+ and [CuII(OH)]+ ions. A redox reaction mechanism has also been established, where Cu ions cycle between CuI and CuII oxidation states during SCR reaction. While the mechanism for the reduction half-cycle (CuII → CuI) is reasonably well-understood, that for the oxidation half-cycle (CuI → CuII) remains an unsettled debate. Herein we report detailed reaction kinetics on low-temperature standard NH3-SCR, supplemented by DFT calculations, as strong evidence that the low-temperature oxidation half-cycle occurs with the participation of two isolated CuI ions via formation of a transient [CuI(NH3)2]+-O2-[CuI(NH3)2]+ intermediate. The feasibility of this reaction mechanism is confirmed from DFT calculations, and the simulated energy barrier and rate constants are consistent with experimental findings. Significantly, the low-temperature standard SCR mechanism proposed here provides full consistency with low-temperature SCR kinetics.

2.
Phys Chem Chem Phys ; 18(15): 10473-85, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27030020

RESUMO

The IR spectra of adsorbed CO and NO probe molecules were used to characterize the coordination chemistry of Fe(2+) ions in solution ion exchanged Fe,H/SSZ-13 zeolites. The effects of Fe ion exchange levels, as well as the sample pre-treatment conditions, on the adsorption of these probe molecules were investigated. The ion exchange levels (in the range of the study) did not affect significantly the IR spectra of either probe molecule, and the IR features and their intensity ratios were very similar. Experiments with both probe molecules substantiated the presence of two distinct types of Fe(2+) ions in cationic positions. We assign these two Fe(2+) ions to two distinct cationic positions: Fe(2+) in 6R and 8R positions. NO initially adsorbs preferentially onto Fe(2+) sites in the 6R position, and then populates sites in the 8R. Fe(2+) ions in the 8R positions require the interaction of more than one NO molecule to move them out from their adsorbate-free cationic positions. As soon as they move from their stable positions, they are able to bind to multiple NO molecules, and form mostly tri-nitrosyls. These tri-nitrosyls, however, are only stable in the presence of gas phase NO; under dynamic vacuum they lose one of the NO molecules from their coordination sphere and form stable di-nitrosyls. The adsorption of CO is much weaker on Fe(2+) sites than that of NO, and requires cryogenic sample temperatures to initiate CO adsorption. Under the conditions applied in this study, only mono-carbonyl formation was observed. Reduction in H2 at 773 K increased the number of Fe(2+) adsorption sites, primarily in the 8R locations. Oxidation by N2O, on the other hand, selectively reduced the adsorption of both CO and NO on the Fe(2+) sites in 8R positions. Adsorbed oxygen left behind from the decomposition of N2O at 573 K readily reacted with CO to produce CO2 even at 150 K.

3.
Phys Chem Chem Phys ; 15(7): 2368-80, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23301245

RESUMO

The adsorption of CO and NO over Cu-SSZ-13 zeolite catalysts, highly active in the selective catalytic reduction of NO(x) with NH(3), was investigated by FTIR spectroscopy, and the results obtained were compared to those collected from other Cu-ion exchanged zeolites (Y,FAU and ZSM-5). Under low CO pressures and at room temperature (295 K), CO forms monocarbonyls exclusively on the Cu(+) ions, while in the presence of gas phase CO dicarbonyls on Cu(+) and adsorbed CO on Cu(2+) centers form, as well. At low (cryogenic) sample temperatures, tricarbonyl formation on Cu(+) sites was also observed. The adsorption of NO produces IR bands that can be assigned to nitrosyls bound to both Cu(+) and Cu(2+) centers, and NO(+) species located in charge compensating cationic positions of the chabasite framework. On the reduced Cu-SSZ-13 samples the formation of N(2)O was also detected. The assignment of the adsorbed NO(x) species was aided by adsorption experiments with isotopically labeled (15)NO. The movement of Cu ions from the sterically hindered six member ring position to the more accessible cavity positions as a result of their interaction with adsorbates (NO and H(2)O) was clearly evidenced. Comparisons of the spectroscopy data obtained in the static transmission IR system to those collected in the flow-through diffuse reflectance cell points out that care must be taken when general conclusions are drawn about the adsorptive and reactive properties of metal cation centers based on a set of data collected under well defined, specific experimental conditions.

4.
Angew Chem Int Ed Engl ; 52(38): 9985-9, 2013 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-23939905

RESUMO

Side on! Combined FTIR and NMR studies revealed the presence of a side-on nitrosyl species in the zeolite Cu-SSZ-13. This intermediate is very similar to those found in nitrite reductase enzyme systems. The identification of this intermediate led to the proposal of a reaction mechanism that is fully consistent with the results of both kinetic and spectroscopic studies.


Assuntos
Cobre/química , Nitrito Redutases/química , Zeolitas/química , Catálise , Cinética , Espectroscopia de Ressonância Magnética
5.
Phys Chem Chem Phys ; 14(13): 4383-90, 2012 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-22354204

RESUMO

Cu-BTC (also known as HKUST-1) is a well-characterized metal-organic framework material produced in an industrial scale and widely studied for a number of potential applications by the scientific community. The co-existence of Cu(+) and Cu(2+) entities has already been observed in this material, but the presence of Cu(+) ions was attributed to oxide impurities. The results presented here clearly demonstrate that Cu(+) ions can be present in high concentrations inside the hybrid structure. Furthermore, switching between the two copper oxidation states can be induced by redox treatments, using vacuum and/or reducing gases at different sample temperatures.


Assuntos
Cobre/química , Compostos Organometálicos/química , Adsorção , Monóxido de Carbono/química , Estruturas Metalorgânicas , Óxido Nítrico/química , Oxirredução , Temperatura
6.
Phys Chem Chem Phys ; 14(7): 2137-43, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22025270

RESUMO

A large-sample-volume constant-flow magic angle sample spinning (CF-MAS) NMR probe is reported for in situ studies of the reaction dynamics, stable intermediates/transition states, and mechanisms of catalytic reactions. In our approach, the reactants are introduced into the catalyst bed using a fixed tube at one end of the MAS rotor while a second fixed tube, linked to a vacuum pump, is attached at the other end of the rotor. The pressure difference between both ends of the catalyst bed inside the sample cell space forces the reactants flowing through the catalyst bed, which improves the diffusion of the reactants and products. This design allows the use of a large sample volume for enhanced sensitivity and thus permitting in situ(13)C CF-MAS studies at natural abundance. As an example of application, we show that reactants, products and reaction transition states associated with the 2-butanol dehydration reaction over a mesoporous silicalite supported heteropoly acid catalyst (HPA/meso-silicalite-1) can all be detected in a single (13)C CF-MAS NMR spectrum at natural abundance. Coke products can also be detected at natural (13)C abundance and under the stopped flow condition. Furthermore, (1)H CF-MAS NMR is used to identify the surface functional groups of HPA/meso-silicalite-1 under the condition of in situ drying. We also show that the reaction dynamics of 2-butanol dehydration using HPA/meso-silicalite-1 as a catalyst can be explored using (1)H CF-MAS NMR.

7.
J Am Chem Soc ; 133(29): 11096-9, 2011 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-21682296

RESUMO

We report the design and synthesis of nanosized Zn(x)Zr(y)O(z) mixed oxides for direct and high-yield conversion of bio-ethanol to isobutene (~83%). ZnO is addded to ZrO(2) to selectively passivate zirconia's strong Lewis acidic sites and weaken Brönsted acidic sites, while simultaneously introducing basicity. As a result, the undesired reactions of bio-ethanol dehydration and acetone polymerization/coking are suppressed. Instead, a surface basic site-catalyzed ethanol dehydrogenation to acetaldehyde, acetaldehyde to acetone conversion via a complex pathway including aldol-condensation/dehydrogenation, and a Brönsted acidic site-catalyzed acetone-to-isobutene reaction pathway dominates on the nanosized Zn(x)Zr(y)O(z) mixed oxide catalyst, leading to a highly selective process for direct conversion of bio-ethanol to isobutene.


Assuntos
Alcenos/química , Etanol/química , Nanoestruturas/química , Óxido de Zinco/química , Zircônio/química , Catálise
9.
J Am Chem Soc ; 131(28): 9715-21, 2009 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-19601683

RESUMO

Dispersion and quantitative characterization of supported catalysts is a grand challenge in catalytic science. In this paper, heteropoly acid H(3)PW(12)O(40) (HPA) is dispersed on mesoporous zeolite silicalite-1 derived from hydrothermal synthesis using carbon black nanoparticle templates, and the catalytic activity is studied for 1-butene isomerization. The HPAs supported on conventional zeolite and on mesoporous zeolite exhibit very different activities and thus provide good model systems to investigate the structure dependence of the catalytic properties. The HPA on mesoporous silicalite-1 shows enhanced catalytic activity for 1-butene isomerization, while HPA on conventional silicalite-1 exhibits low activity. To elucidate the structural difference, supported HPA catalysts are characterized using a variety of techniques, including (31)P magic angle spinning nuclear magnetic resonance, and are shown to contain a range of species on both mesoporous and conventional zeolites. However, contrary to studies reported in the literature, conventional NMR techniques and chemical shifts alone do not provide sufficient information to distinguish the dispersed and aggregated surface species. The dispersed phase and the nondispersed phase can only be unambiguously and quantitatively characterized using spin-lattice relaxation NMR techniques. The HPA supported on mesoporous zeolite contains a fast relaxation component related to the dispersed catalyst, giving a much higher activity, while the HPA supported on conventional zeolite has essentially only the slow relaxation component with very low activity. The results obtained from this work demonstrate that the combination of spinning sideband fitting and spin-lattice relaxation techniques can provide detailed structural information on not only the Keggin structure for HPA but also the degree of dispersion on the support.

10.
Nat Commun ; 10(1): 1137, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30850592

RESUMO

Commercial Cu/SAPO-34 selective catalytic reduction (SCR) catalysts have experienced unexpected and quite perplexing failure. Understanding the causes at an atomic level is vital for the synthesis of more robust Cu/SAPO-34 catalysts. Here we show, via application of model catalysts with homogeneously dispersed isolated Cu ions, that Cu transformations resulting from low-temperature hydrothermal aging and ambient temperature storage can be semi-quantitatively probed with 2-dimensional pulsed electron paramagnetic resonance. Coupled with kinetics, additional material characterizations and DFT simulations, we propose the following catalyst deactivation steps: (1) detachment of Cu(II) ions from cationic positions in the form of Cu(OH)2; (2) irreversible hydrolysis of the SAPO-34 framework forming terminal Al species; and (3) interaction between Cu(OH)2 and terminal Al species forming SCR inactive, Cu-aluminate like species. Especially significant is that these reactions are greatly facilitated by condensed water molecules under wet ambient conditions, causing low temperature failure of the commercial Cu/SAPO-34 catalysts.

11.
J Am Chem Soc ; 130(12): 3722-3, 2008 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-18311978

RESUMO

The use of an ultrahigh magnetic field spectrometer and 95Mo isotope enrichment facilitate the direct observation of the local structure of Mo species on Mo/zeolite catalysts by 95Mo NMR. Top trace: The experimental 95Mo NMR spectrum of 6Mo/HZSM-5. Bottom traces: The simulated overall spectrum (orange), the spectral component corresponding to MoO3 (purple), and the component corresponding to the exchanged Mo species (green). The exchanged Mo species proved to be the active center for the methane dehydroaromatization (MDA) reaction.


Assuntos
Hidrocarbonetos Aromáticos/síntese química , Espectroscopia de Ressonância Magnética/métodos , Metano/química , Molibdênio/química , Zeolitas/química , Catálise , Hidrocarbonetos Aromáticos/química , Isótopos , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Sensibilidade e Especificidade
12.
Chem Commun (Camb) ; (9): 984-6, 2007 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-17311142

RESUMO

Exposure of NO(2)-saturated BaO/gamma-Al(2)O(3) NO(x) storage materials to H(2)O vapour results in the conversion of surface nitrates to Ba(NO(3))(2) crystallites, causing dramatic morphological changes in the Ba-containing phase, demonstrating a role for water in affecting the NO(x) storage/reduction properties of these materials.

13.
J Phys Chem B ; 110(34): 17001-8, 2006 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-16927993

RESUMO

Room-temperature Ba deposition on an oxygen-terminated theta-Al(2)O(3)/NiAl(100) ultrathin film substrate under ultrahigh vacuum (UHV) conditions is studied using X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and temperature programmed desorption (TPD) techniques. In addition, Ba oxidation by the ions of the alumina substrate at 300 K < T < 1200 K in the absence of a gas-phase oxidizing agent is investigated. Our results indicate that at room temperature Ba grows in a layer-by-layer fashion for the first two layers, and Ba is partially oxidized. Annealing at T < 700 K results in further oxidation of the Ba species, whereas annealing at higher temperatures leads to loss of Ba from the surface via desorption and subsurface diffusion.

14.
J Phys Chem B ; 110(34): 17009-14, 2006 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-16927994

RESUMO

Ba deposition on a theta-Al(2)O(3)/NiAl(100) substrate and its oxidation with gas-phase O(2) at various surface temperatures are investigated using X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and temperature programmed desorption (TPD) techniques. Oxidation of metallic Ba by gas-phase O(2) at 800 K results in the growth of 2D and 3D BaO surface domains. Saturation of a metallic Ba layer deposited on theta-Al(2)O(3)/NiAl(100) with O(2)(g) at 300 K reveals the formation of BaO(2)-like surface states. These metastable peroxide (O(2)(2-)) states are converted to regular oxide (O(2-)) states at higher temperatures (800 K). In terms of thermal stability, BaO surface layers (theta(Ba) < 5 ML) that are formed by O(2)(g) assisted oxidation on the theta-Al(2)O(3)/NiAl(100) substrate are significantly more stable (with a desorption/decomposition temperature of c.a. 1050 K) than the thick (2 < theta(Ba) < 10 ML) metallic/partially oxidized Ba layers prepared in the absence of gas-phase O(2), whose multilayer desorption features appear as low as 700 K.

15.
J Phys Chem B ; 110(15): 8025-34, 2006 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-16610903

RESUMO

The coadsorption of H(2)O and NO(2) molecules on a well-ordered, ultrathin theta-Al(2)O(3)/NiAl(100) film surface was studied using temperature programmed desorption (TPD), infrared reflection absorption spectroscopy (IRAS), and X-ray photoelectron spectroscopy (XPS). For H(2)O and NO(2) monolayers adsorbed separately on the theta-Al(2)O(3)/NiAl(100) surface, adsorption energies were estimated to be 44.8 and 36.6 kJ/mol, respectively. Coadsorption systems prepared by sequential deposition of NO(2) and H(2)O revealed the existence of coverage and temperature-dependent adsorption regimes where H(2)O molecules and the surface NO(x) species (NO(2)/N(2)O(4)/NO(2)(-),NO(3)(-)) form segregated and/or mixed domains. Influence of the changes in the crystallinity of solid water (amorphous vs crystalline) on the coadsorption properties of the NO(2)/H(2)O/theta-Al(2)O(3)/NiAl(100) system is also discussed.

16.
J Phys Chem B ; 110(21): 10441-8, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16722751

RESUMO

Desulfation processes were investigated over sulfated Pt-BaO/Al2O3 with different barium loading (8 and 20 wt %) by using H2 temperature programmed reaction (TPRX), transmission electron microscope (TEM) with energy dispersive spectroscopy (EDS), sulfur K-edge X-ray absorption near-edge spectroscopy (XANES), and in situ time-resolved X-ray diffraction (TR-XRD) techniques. Both sulfated samples (8 and 20 wt %) form sulfate species (primarily BaSO4) as evidenced by S K-edge XANES and in situ TR-XRD. However, the desulfation behavior is strongly dependent on the barium loading. Sulfated Pt-BaO8/Al2O3, consisting predominantly of surface BaO/BaCO3 species, displays more facile desulfation by H2 at lower temperatures than sulfated Pt-BaO20/Al2O3, a material containing primarily bulk BaO/BaCO3 species. Therefore, after desulfation with H2 up to 1073 K, the amount of the remaining sulfur species on the former, mostly as BaS, is much less than that on the latter. This suggests that the initial morphology differences between the two samples play a crucial role in determining the extent of desulfation and the temperature at which it occurs. It is concluded that the removal of sulfur is significantly easier at lower barium loading. This finding can potentially be important in developing more sulfur resistant LNT catalyst systems.

17.
J Phys Chem B ; 109(8): 3431-6, 2005 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-16851375

RESUMO

The structure of an ordered, ultrathin theta-Al(2)O(3) film grown on a NiAl(100) single-crystal surface was studied by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and low-energy electron diffraction (LEED), and its interaction with water was investigated with temperature programmed desorption (TPD) and XPS. Our results indicate that H(2)O adsorption on the theta-Al(2)O(3)/NiAl(100) surface is predominantly molecular rather than dissociative. For theta(H)()2(O) < 1 ML (ML = monolayer), H(2)O molecules were found to populate Al(3+) cation sites to form isolated H(2)O species aligned in a row along the cation sites on the oxide surface with a repulsive interaction between them. For theta(H)()2(O) > 1 ML, three-dimensional ice multilayers were observed to form, which then desorb during TPD with approximate zero-order kinetics as expected. A small extent of H(2)O dissociation was observed to occur on the theta-Al(2)O(3)/NiAl(100) surface, which was attributed to the presence of a low concentration of oxygen atom vacancies. Titration of these defect sites with adsorbed H(2)O molecules revealed an estimated defect density of 0.05 ML for the theta-Al(2)O(3)/NiAl(100) system consistent with the ordered nature of the synthesized oxide film.

18.
J Phys Chem B ; 109(33): 15977-84, 2005 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-16853027

RESUMO

Interaction of NO2 with an ordered theta-Al2O3/NiAl(100) model catalyst surface was investigated using temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). The origin of the NO(x) uptake of the catalytic support (i.e., Al2O3) in a NO(x) storage catalyst is identified. Adsorbed NO2 is converted to strongly bound nitrites and nitrates that are stable on the model catalyst surface at temperatures as high as 300 and 650 K, respectively. The results show that alumina is not completely inert and may stabilize some form of NO(x) under certain catalytic conditions. The stability of the NO(x) formed by exposing the theta-Al2O3 model catalyst to NO2 adsorption increases in the order NO2 (physisorbed or N2O4) < NO2 (chemisorbed) < NO2- < NO3-.

19.
J Phys Chem B ; 109(4): 1481-90, 2005 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-16851119

RESUMO

The adsorption of HCN and the reaction of HCN with NO(2) over Na-, and Ba-Y,FAU zeolite catalysts were investigated using in situ FTIR and TPD/TPR spectroscopies. Both catalysts adsorb HCN molecularly at room temperature, and the strength of adsorption is higher over Ba-Y than Na-Y. Over Na-Y, the reaction between HCN and NO(2) is slow at 473 K. On Ba-Y, HCN reacts readily with NO(2) at 473K, forming N(2), CO, CO(2), HNCO, NO, N(2)O, and C(2)N(2). The results of this investigation suggest that initial step in the HCN + NO(2) reaction over these catalysts is the hydrogen abstraction from HCN, and the formation of ionic CN- and NC- species. The formation of N(2) can proceed directly from these ionic species upon their interaction with NO+. Alternatively, these cyanide species can be oxidized to isocyanates which then can be further transformed to N(2), N(2)O and CO(x) in their subsequent reaction with NO(x).


Assuntos
Bário/química , Cianeto de Hidrogênio/química , Óxidos de Nitrogênio/química , Sódio/química , Zeolitas/química , Adsorção , Catálise , Sensibilidade e Especificidade , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Temperatura
20.
J Phys Chem B ; 109(1): 27-9, 2005 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-16850977

RESUMO

Temperature programmed desorption, infrared spectroscopy, and (15)N solid state NMR spectroscopy were used to characterize the nature of the nitrate species formed on Al(2)O(3) and BaO/Al(2)O(3) NO(x) storage/reduction materials. Two distinctly different nitrate species were found: surface nitrates that are associated with a monolayer BaO on the alumina support, and a bulk-like nitrate that forms on this thin BaO layer. The surface nitrates desorb as NO(2) at lower temperatures than do the bulk-like nitrates, which decompose as NO+O(2) at higher temperatures. The amount of NO(x) stored in the monolayer nitrate is proportional to the surface area of the catalyst, while that in the bulk nitrate increases with BaO coverage.


Assuntos
Óxido de Alumínio/química , Compostos de Bário/química , Nitratos/química , Dióxido de Nitrogênio/química , Óxidos/química , Adsorção , Catálise , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA