Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 107(5): 2289-94, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-20133874

RESUMO

Because GABA(A) receptors containing alpha2 subunits are highly represented in areas of the brain, such as nucleus accumbens (NAcc), frontal cortex, and amygdala, regions intimately involved in signaling motivation and reward, we hypothesized that manipulations of this receptor subtype would influence processing of rewards. Voltage-clamp recordings from NAcc medium spiny neurons of mice with alpha2 gene deletion showed reduced synaptic GABA(A) receptor-mediated responses. Behaviorally, the deletion abolished cocaine's ability to potentiate behaviors conditioned to rewards (conditioned reinforcement), and to support behavioral sensitization. In mice with a point mutation in the benzodiazepine binding pocket of alpha2-GABA(A) receptors (alpha2H101R), GABAergic neurotransmission in medium spiny neurons was identical to that of WT (i.e., the mutation was silent), but importantly, receptor function was now facilitated by the atypical benzodiazepine Ro 15-4513 (ethyl 8-amido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo [1,5-a] [1,4] benzodiazepine-3-carboxylate). In alpha2H101R, but not WT mice, Ro 15-4513 administered directly into the NAcc-stimulated locomotor activity, and when given systemically and repeatedly, induced behavioral sensitization. These data indicate that activation of alpha2-GABA(A) receptors (most likely in NAcc) is both necessary and sufficient for behavioral sensitization. Consistent with a role of these receptors in addiction, we found specific markers and haplotypes of the GABRA2 gene to be associated with human cocaine addiction.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/metabolismo , Transtornos Relacionados ao Uso de Cocaína/psicologia , Cocaína/farmacologia , Aprendizagem/efeitos dos fármacos , Aprendizagem/fisiologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores de GABA-A/fisiologia , Adulto , Animais , Azidas/farmacologia , Benzodiazepinas/farmacologia , Sítios de Ligação/genética , Estudos de Casos e Controles , Transtornos Relacionados ao Uso de Cocaína/genética , Condicionamento Psicológico , Dopamina/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Mutação Puntual , Polimorfismo de Nucleotídeo Único , Receptores de GABA-A/deficiência , Recompensa , Adulto Jovem
2.
Eur J Neurosci ; 29(6): 1177-87, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19302153

RESUMO

The sedative and hypnotic agent 4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridine-3-ol (THIP) is a GABA(A) receptor (GABA(A)R) agonist that preferentially activates delta-subunit-containing GABA(A)Rs (delta-GABA(A)Rs). To clarify the role of delta-GABA(A)Rs in mediating the sedative actions of THIP, we utilized mice lacking the alpha(1)- or delta-subunit in a combined electrophysiological and behavioural analysis. Whole-cell patch-clamp recordings were obtained from ventrobasal thalamic nucleus (VB) neurones at a holding potential of -60 mV. Application of bicuculline to wild-type (WT) VB neurones revealed a GABA(A)R-mediated tonic current of 92 +/- 19 pA, which was greatly reduced (13 +/- 5 pA) for VB neurones of delta(0/0) mice. Deletion of the delta- but not the alpha(1)-subunit dramatically reduced the THIP (1 mum)-induced inward current in these neurones (WT, -309 +/- 23 pA; delta(0/0), -18 +/- 3 pA; alpha(1) (0/0), -377 +/- 45 pA). Furthermore, THIP selectively decreased the excitability of WT and alpha(1) (0/0) but not delta(0/0) VB neurones. THIP did not affect the properties of miniature inhibitory post-synaptic currents in any of the genotypes. No differences in rotarod performance and locomotor activity were observed across the three genotypes. In WT mice, performance of these behaviours was impaired by THIP in a dose-dependent manner. The effect of THIP on rotarod performance was blunted for delta(0/0) but not alpha(1) (0/0) mice. We previously reported that deletion of the alpha(1)-subunit abolished synaptic GABA(A) responses of VB neurones. Therefore, collectively, these findings suggest that extrasynaptic delta-GABA(A)Rs vs. synaptic alpha(1)-subunit-containing GABA(A)Rs of thalamocortical neurones represent an important molecular target underpinning the sedative actions of THIP.


Assuntos
Agonistas GABAérgicos/farmacologia , Isoxazóis/farmacologia , Inibição Neural/efeitos dos fármacos , Receptores de GABA-A/fisiologia , Tálamo/efeitos dos fármacos , Análise de Variância , Animais , Animais Recém-Nascidos , Bicuculina/farmacologia , Relação Dose-Resposta a Droga , Estimulação Elétrica/métodos , Feminino , Antagonistas GABAérgicos/farmacologia , Glicinérgicos/farmacologia , Técnicas In Vitro , Locomoção/efeitos dos fármacos , Locomoção/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Inibição Neural/genética , Técnicas de Patch-Clamp/métodos , Receptores de GABA-A/deficiência , Receptores de GABA-A/genética , Estricnina/farmacologia , Fatores de Tempo
3.
J Physiol ; 586(4): 965-87, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18063661

RESUMO

Thalamic ventrobasal (VB) relay neurones express multiple GABA(A) receptor subtypes mediating phasic and tonic inhibition. During postnatal development, marked changes in subunit expression occur, presumably reflecting changes in functional properties of neuronal networks. The aims of this study were to characterize the properties of synaptic and extrasynaptic GABA(A) receptors of developing VB neurones and investigate the role of the alpha(1) subunit during maturation of GABA-ergic transmission, using electrophysiology and immunohistochemistry in wild type (WT) and alpha(1)(0/0) mice and mice engineered to express diazepam-insensitive receptors (alpha(1H101R), alpha(2H101R)). In immature brain, rapid (P8/9-P10/11) developmental change to mIPSC kinetics and increased expression of extrasynaptic receptors (P8-27) formed by the alpha(4) and delta subunit occurred independently of the alpha(1) subunit. Subsequently (> or = P15), synaptic alpha(2) subunit/gephyrin clusters of WT VB neurones were replaced by those containing the alpha(1) subunit. Surprisingly, in alpha(1)(0/0) VB neurones the frequency of mIPSCs decreased between P12 and P27, because the alpha(2) subunit also disappeared from these cells. The loss of synaptic GABA(A) receptors led to a delayed disruption of gephyrin clusters. Despite these alterations, GABA-ergic terminals were preserved, perhaps maintaining tonic inhibition. These results demonstrate that maturation of synaptic and extrasynaptic GABA(A) receptors in VB follows a developmental programme independent of the alpha(1) subunit. Changes to synaptic GABA(A) receptor function and the increased expression of extrasynaptic GABA(A) receptors represent two distinct mechanisms for fine-tuning GABA-ergic control of thalamic relay neurone activity during development.


Assuntos
Neurônios/metabolismo , Receptores de GABA-A/metabolismo , Sinapses/metabolismo , Tálamo/crescimento & desenvolvimento , Tálamo/metabolismo , Animais , Proteínas de Transporte/metabolismo , Eletrofisiologia , Feminino , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Subunidades Proteicas/metabolismo , Transmissão Sináptica/fisiologia
4.
J Neurosci ; 25(50): 11513-20, 2005 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-16354909

RESUMO

Among hypnotic agents that enhance GABAA receptor function, etomidate is unusual because it is selective for beta2/beta3 compared with beta1 subunit-containing GABAA receptors. Mice incorporating an etomidate-insensitive beta2 subunit (beta(2N265S)) revealed that beta2 subunit-containing receptors mediate the enhancement of slow-wave activity (SWA) by etomidate, are required for the sedative, and contribute to the hypnotic actions of this anesthetic. Although the anatomical location of the beta2-containing receptors that mediate these actions is unknown, the thalamus is implicated. We have characterized GABAA receptor-mediated neurotransmission in thalamic nucleus reticularis (nRT) and ventrobasalis complex (VB) neurons of wild-type, beta2(-/-), and beta(2N265S) mice. VB but not nRT neurons exhibit a large GABA-mediated tonic conductance that contributes approximately 80% of the total GABAA receptor-mediated transmission. Consequently, although etomidate enhances inhibition in both neuronal types, the effect of this anesthetic on the tonic conductance of VB neurons is dominant. The GABA-enhancing actions of etomidate in VB but not nRT neurons are greatly suppressed by the beta(2N265S) mutation. The hypnotic THIP (Gaboxadol) induces SWA and at low, clinically relevant concentrations (30 nM to 3 microM) increases the tonic conductance of VB neurons, with no effect on VB or nRT miniature IPSCs (mIPSCs) or on the holding current of nRT neurons. Zolpidem, which has no effect on SWA, prolongs VB mIPSCs but is ineffective on the phasic and tonic conductance of nRT and VB neurons, respectively. Collectively, these findings suggest that enhancement of extrasynaptic inhibition in the thalamus may contribute to the distinct sleep EEG profiles of etomidate and THIP compared with zolpidem.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Sistemas de Liberação de Medicamentos/métodos , Hipnóticos e Sedativos/administração & dosagem , Neurônios/fisiologia , Receptores de GABA-A/fisiologia , Tálamo/fisiologia , Animais , Feminino , Agonistas de Receptores de GABA-A , Masculino , Camundongos , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Neurônios/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Tálamo/efeitos dos fármacos
5.
Prog Neurobiol ; 71(1): 67-80, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-14611869

RESUMO

Certain metabolites of progesterone and deoxycorticosterone are established as potent and selective positive allosteric modulators of the gamma-aminobutyric acid type A (GABA(A)) receptor. Upon administration these steroids exhibit clear behavioural effects that include anxiolysis, sedation and analgesia, they are anticonvulsant and at high doses induce a state of general anaesthesia, a profile consistent with an action to enhance neuronal inhibition. Physiologically, peripherally synthesised pregnane steroids derived from endocrine glands such as the adrenals and ovaries function as hormones by crossing the blood brain barrier to influence neuronal signalling. However, the demonstration that certain neurons and glial cells within the central nervous system (CNS) can synthesize these steroids either de novo, or from peripherally derived progesterone, has led to the proposal that these steroids (neurosteroids) can additionally function in a paracrine manner, to locally influence GABAergic transmission. Steroid levels are known to change dynamically, for example in stress and during pregnancy. Given that GABA(A) receptors are ubiquitously expressed throughout the central nervous system, such changes in steroid levels would be predicted to cause a global enhancement of inhibitory neurotransmission throughout the brain, a scenario that would seem incompatible with a physiological role as a selective neuromodulator. Here, we will review emerging evidence that the GABA-modulatory actions of the pregnane steroids are highly selective, with their actions being brain region and indeed neuron dependent. Furthermore, the sensitivity of GABA(A) receptors is not static but can dynamically change. The molecular mechanisms underpinning this neuronal specificity will be discussed with particular emphasis being given to the role of GABA(A) receptor isoforms, protein phosphorylation and local steroid metabolism and synthesis.


Assuntos
Sistema Nervoso Central/fisiologia , Receptores de GABA-A/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Esteroides/metabolismo , Esteroides/farmacologia , Animais , Humanos , Plasticidade Neuronal/fisiologia , Fosforilação , Isoformas de Proteínas , Receptores de GABA-A/química , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
6.
Neuropharmacology ; 103: 163-73, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26626485

RESUMO

As neuronal development progresses, GABAergic synaptic transmission undergoes a defined program of reconfiguration. For example, GABAA receptor (GABAAR)-mediated synaptic currents, (miniature inhibitory postsynaptic currents; mIPSCs), which initially exhibit a relatively slow decay phase, become progressively reduced in duration, thereby supporting the temporal resolution required for mature network activity. Here we report that during postnatal development of cortical layer 2/3 pyramidal neurons, GABAAR-mediated phasic inhibition is influenced by a resident neurosteroid tone, which wanes in the second postnatal week, resulting in the brief phasic events characteristic of mature neuronal signalling. Treatment of cortical slices with the immediate precursor of 5α-pregnan-3α-ol-20-one (5α3α), the GABAAR-inactive 5α-dihydroprogesterone, (5α-DHP), greatly prolonged the mIPSCs of P20 pyramidal neurons, demonstrating these more mature neurons retain the capacity to synthesize GABAAR-active neurosteroids, but now lack the endogenous steroid substrate. Previously, such developmental plasticity of phasic inhibition was ascribed to the expression of synaptic GABAARs incorporating the α1 subunit. However, the duration of mIPSCs recorded from L2/3 cortical neurons derived from α1 subunit deleted mice, were similarly under the developmental influence of a neurosteroid tone. In addition to principal cells, synaptic GABAARs of L2/3 interneurons were modulated by native neurosteroids in a development-dependent manner. In summary, local neurosteroids influence synaptic transmission during a crucial period of cortical neurodevelopment, findings which may be of importance for establishing normal network connectivity.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/fisiologia , Potenciais Pós-Sinápticos em Miniatura , Neurotransmissores/farmacologia , Células Piramidais/fisiologia , Transmissão Sináptica , Animais , Córtex Cerebral/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Potenciais Pós-Sinápticos em Miniatura/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA