Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Inf Model ; 63(2): 595-604, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36630702

RESUMO

Cysteine is a common amino acid with a thiol group that plays a pivotal role in a variety of scenarios in redox biochemistry. In contrast, selenocysteine, the 21st amino acid, is only present in 25 human proteins. Classical force-field parameters for cysteine and selenocysteine are still scarce. In this context, we present a methodology to obtain Lennard-Jones parameters for cysteine and selenocysteine in different physiologically relevant oxidation and protonation states. The new force field parameters obtained in this work are available at https://github.com/MALBECC/AMBER-parameters-database. The parameters were adjusted to reproduce water radial distribution functions obtained by density functional theory ab initio molecular dynamics. We validated the results by evaluating the impact of the choice of parameters on the structure and dynamics in classical molecular dynamics simulations of representative proteins containing catalytic cysteine/selenocysteine residues. There are significant changes in protein structure and dynamics depending on the parameters choice, specifically affecting the residues close to the catalytic sites.


Assuntos
Cisteína , Selenocisteína , Humanos , Aminoácidos/química , Proteínas/química , Simulação de Dinâmica Molecular
2.
Proc Natl Acad Sci U S A ; 114(14): 3672-3677, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28289227

RESUMO

Fluorescence, the absorption of short-wavelength electromagnetic radiation reemitted at longer wavelengths, has been suggested to play several biological roles in metazoans. This phenomenon is uncommon in tetrapods, being restricted mostly to parrots and marine turtles. We report fluorescence in amphibians, in the tree frog Hypsiboas punctatus, showing that fluorescence in living frogs is produced by a combination of lymph and glandular emission, with pigmentary cell filtering in the skin. The chemical origin of fluorescence was traced to a class of fluorescent compounds derived from dihydroisoquinolinone, here named hyloins. We show that fluorescence contributes 18-29% of the total emerging light under twilight and nocturnal scenarios, largely enhancing brightness of the individuals and matching the sensitivity of night vision in amphibians. These results introduce an unprecedented source of pigmentation in amphibians and highlight the potential relevance of fluorescence in visual perception in terrestrial environments.


Assuntos
Anuros/fisiologia , Linfa/química , Pele/química , Animais , Fluorescência , Espectroscopia de Ressonância Magnética , Visão Noturna
3.
Free Radic Res ; 53(1): 18-25, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30468096

RESUMO

Proteins are main targets of oxidants in biological systems. This oxidation may occur in the protein backbone as well as in certain amino acid side chains, depending on the oxidant and amino acid intrinsic reactivity. Moreover, many enzymes are capable of generating stable amino acid radicals, such as tyrosyl, tryptophanyl and cysteinyl radicals. These species react very rapidly (many times as diffusion-controlled reactions) with relevant cellular open-shell species such as nitric oxide (·NO) or molecular oxygen (O2). The exception to this apparent rule is tyrosyl radical, that reacts at diffusion rates with ·NO, but shows very slow reactivity towards O2 (rate constant <103 M-1 s-1). In this work, we provide a comparative molecular-level description of the reaction mechanisms involved in the reactions of tyrosyl, tryptophanyl and cysteinyl radicals towards ·NO and O2, through quantum mechanics simulations which allow us to obtain relevant energetic and structural parameters, proposing a molecular explanation to this tyrosyl discrimination capability, namely, its marginal reactivity with O2.


Assuntos
Cisteína/química , Teoria da Densidade Funcional , Óxido Nítrico/química , Oxigênio/química , Triptofano/química , Tirosina/química , Difusão , Radicais Livres/química , Estrutura Molecular , Oxirredução
4.
J Phys Chem B ; 120(40): 10547-10552, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27627463

RESUMO

UV-visible spectroscopic studies of aqueous hydroquinone (HQ) and 1,4-benzoquinone (BQ) have been carried out along with classical molecular dynamics (MD) and quantum calculations. The experimental results confirmed that HQ is stable in hot compressed water up to at least 523 K at 70 bar, but BQ decomposes at temperatures lower than 373 K, leading to the formation of HQ and other nonabsorbing products. Even though benzoquinone is not stable, our study significantly extended the temperature range of other spectroscopic studies, and the spectra of HQ up to 523 K can still be useful for other studies, particularly those related to organic species in deep ocean hydrothermal vents. Classical MD simulations at high temperatures show, as expected, a weakening of the solute-solvent H-bonding interactions. The dependence of the maximum absorption of BQ on temperature was also analyzed, although a significant degree of decomposition was observed in the time frame of our experiments. The shift of the maximum absorption peak of BQ with temperature was consistent with time-dependent density functional theory calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA