Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

País/Região como assunto
País de afiliação
Intervalo de ano de publicação
1.
Int J Syst Evol Microbiol ; 70(12): 6203-6212, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33064068

RESUMO

Azospirillum sp. strain Sp245T, originally identified as belonging to Azospirillum brasilense, is recognized as a plant-growth-promoting rhizobacterium due to its ability to fix atmospheric nitrogen and to produce plant-beneficial compounds. Azospirillum sp. Sp245T and other related strains were isolated from the root surfaces of different plants in Brazil. Cells are Gram-negative, curved or slightly curved rods, and motile with polar and lateral flagella. Their growth temperature varies between 20 to 38 °C and their carbon source utilization is similar to other Azospirillum species. A preliminary 16S rRNA sequence analysis showed that the new species is closely related to A. brasilense Sp7T and A. formosense CC-Nfb-7T. Housekeeping genes revealed that Azospirillum sp. Sp245T, BR 12001 and Vi22 form a separate cluster from strain A. formosense CC-Nfb-7T, and a group of strains closely related to A. brasilense Sp7T. Overall genome relatedness index (OGRI) analyses estimated based on average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) between Azospirillum sp. Sp245T and its close relatives to other Azospirillum species type strains, such as A. brasilense Sp7T and A. formosense CC-Nfb-7T , revealed values lower than the limit of species circumscription. Moreover, core-proteome phylogeny including 1079 common shared proteins showed the independent clusterization of A. brasilense Sp7T, A. formosense CC-Nfb-7T and Azospirillum sp. Sp245T, a finding that was corroborated by the genome clustering of OGRI values and housekeeping phylogenies. The DNA G+C content of the cluster of Sp245T was 68.4-68.6 %. Based on the phylogenetic, genomic, phenotypical and physiological analysis, we propose that strain Sp245T together with the strains Vi22 and BR12001 represent a novel species of the genus Azospirillum, for which the name Azospirillum baldaniorum sp. nov. is proposed. The type strain is Sp245T (=BR 11005T=IBPPM 219T) (GCF_007827915.1, GCF_000237365.1, and GCF_003119195.2).


Assuntos
Azospirillum brasilense/classificação , Azospirillum/classificação , Genoma Bacteriano , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , Brasil , DNA Bacteriano/genética , Flagelos/química , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
2.
Genet Mol Biol ; 43(2): e20180377, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32555941

RESUMO

Plastomes are very informative structures for comparative phylogenetic and evolutionary analyses. We sequenced and analyzed the complete plastome of Campomanesia xanthocarpa and compared its gene order, structure, and evolutionary characteristics within Myrtaceae. Analyzing 48 species of Myrtaceae, we identified six genes representing 'hotspots' of variability within the plastomes (ycf2, atpA, rpoC2, pcbE, ndhH and rps16), and performed phylogenetic analyses based on: (i) the ycf2 gene, (ii) all the six genes identified as 'hotspots' of variability, and (iii) the genes identified as 'hotspots' of variability, except the ycf2 gene. The structure, gene order, and gene content of the C. xanthocarpa plastome are similar to other Myrtaceae species. Phylogenetic analyses revealed the ycf2 gene as a promissing region for barcoding within this family, having also a robust phylogenetic signal. The synonymous and nonsynonymous substitution rates and the Ka/Ks ratio revealed low values for the ycf2 gene among C. xanthocarpa and the other 47 analyzed species of Myrtaceae, with moderate purifying selection acting on this gene. The average nucleotide identity (ANI) analysis of the whole plastomes produced phylogenetic trees supporting the monophyly of three Myrtaceae tribes. The findings of this study provide support for planning conservation, breeding, and biotechnological programs for this species.

3.
Plant Mol Biol ; 94(6): 625-640, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28674938

RESUMO

KEY MESSAGE: Herbaspirillum rubrisubalbicans decreases growth of rice. Inoculation of rice with H. rubrisubalbicans increased the ACCO mRNA levels and ethylene production. The H. rubrisubalbicans rice interactions were further characterized by proteomic approach. Herbaspirillum rubrisubalbicans is a well-known growth-promoting rhizobacteria that can also act as a mild phyto-pathogen. During colonisation of rice, RT-qPCR analyses showed that H. rubrisubalbicans up-regulates the methionine recycling pathway as well as phyto-siderophore synthesis genes. mRNA levels of ACC oxidase and ethylene levels also increased in rice roots but inoculation with H. rubrisubalbicans impaired growth of the rice plant. A proteomic approach was used to identify proteins specifically modulated by H. rubrisubalbicans in rice and amongst the differentially expressed proteins a V-ATPase and a 14-3-3 protein were down-regulated. Several proteins of H. rubrisubalbicans were identified, including the type VI secretion system effector Hcp1, suggesting that protein secretion play a role colonisation in rice. Finally, the alkyl hydroperoxide reductase, a primary scavenger of endogenous hydrogen peroxide was also identified. Monitoring the levels of reactive oxygen species in the epiphytic bacteria by flow cytometry revealed that H. rubrisubalbicans is subjected to oxidative stress, suggesting that the alkyl hydroperoxide reductase is an important regulator of redox homeostasis in plant-bacteria interactions.


Assuntos
Etilenos/metabolismo , Herbaspirillum/patogenicidade , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Proteínas de Bactérias/metabolismo , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Ferro/metabolismo , Oryza/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo
4.
BMC Bioinformatics ; 17(Suppl 18): 455, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28105917

RESUMO

BACKGROUND: Azopirillum brasilense is a plant-growth promoting nitrogen-fixing bacteria that is used as bio-fertilizer in agriculture. Since nitrogen fixation has a high-energy demand, the reduction of N2 to NH4+ by nitrogenase occurs only under limiting conditions of NH4+ and O2. Moreover, the synthesis and activity of nitrogenase is highly regulated to prevent energy waste. In A. brasilense nitrogenase activity is regulated by the products of draG and draT. The product of the draB gene, located downstream in the draTGB operon, may be involved in the regulation of nitrogenase activity by an, as yet, unknown mechanism. RESULTS: A deep in silico analysis of the product of draB was undertaken aiming at suggesting its possible function and involvement with DraT and DraG in the regulation of nitrogenase activity in A. brasilense. In this work, we present a new artificial intelligence strategy for protein classification, named ProClaT. The features used by the pattern recognition model were derived from the primary structure of the DraB homologous proteins, calculated by a ProClaT internal algorithm. ProClaT was applied to this case study and the results revealed that the A. brasilense draB gene codes for a protein highly similar to the nitrogenase associated NifO protein of Azotobacter vinelandii. CONCLUSIONS: This tool allowed the reclassification of DraB/NifO homologous proteins, hypothetical, conserved hypothetical and those annotated as putative arsenate reductase, ArsC, as NifO-like. An analysis of co-occurrence of draB, draT, draG and of other nif genes was performed, suggesting the involvement of draB (nifO) in nitrogen fixation, however, without the definition of a specific function.


Assuntos
Azospirillum brasilense/química , Azospirillum brasilense/enzimologia , Proteínas de Bactérias/química , Biologia Computacional/métodos , Nitrogenase/química , Azospirillum brasilense/genética , Azospirillum brasilense/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biologia Computacional/instrumentação , Genes Bacterianos , Fixação de Nitrogênio , Nitrogenase/genética , Nitrogenase/metabolismo , Óperon
5.
Curr Genet ; 62(2): 443-53, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26643654

RESUMO

The complete plastome sequencing is an efficient option for increasing phylogenetic resolution and evolutionary studies, as well as may greatly facilitate the use of plastid DNA markers in plant population genetic studies. Merostachys and Guadua stand out as the most common and the highest potential utilization bamboos indigenous of Brazil. Here, we sequenced the complete plastome sequences of the Brazilian Guadua chacoensis and Merostachys sp. to perform full plastome phylogeny and characterize the occurrence, type, and distribution of SRRs using 20 Bambuseae species. The determined plastome sequence of Merostachys sp. and G. chacoensis is 136,334 and 135,403 bp in size, respectively, with an identical gene content and typical quadripartite structure consisting of a pair of IRs separated by the LSC and SSC regions. The Maximum Likelihood and Bayesian Inference analyses produced phylogenomic trees identical in topology. These trees supported monophyly of Paleotropical and Neotropical Bamboos clades. The Neotropical bamboos segregated into three well-supported lineages, Chusqueinae, Guaduinae, and Arthrostylidiinae, with the last two forming a well-supported sister relationship. Paleotropical bamboos segregated into two well-supported lineages, Hickeliinae and Bambusinae + Melocanninae. We identified 141.8 cpSSR in Bambuseae plastomes and an inferior value (38.15) for plastome coding sequences. Among them, we identified 16 polymorphic SSR loci, with number of alleles varying from 3 to 10. These 16 polymorphic cpSSR loci in Bambuseae plastome can be assessed for the intraspecific level of polymorphism, leading to innovative highly sensitive phylogeographic and population genetics studies for this tribe.


Assuntos
Genomas de Plastídeos , Filogenia , Plastídeos/genética , Poaceae/genética , Loci Gênicos , Análise de Sequência de DNA
7.
Appl Environ Microbiol ; 81(19): 6700-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26187960

RESUMO

Azospirillum is a rhizobacterial genus containing plant growth-promoting species associated with different crops worldwide. Azospirillum brasilense strains exhibit a growth-promoting effect by means of phytohormone production and possibly by N2 fixation. However, one of the most important factors for achieving an increase in crop yield by plant growth-promoting rhizobacteria is the survival of the inoculant in the rhizosphere, which is not always achieved. The objective of this study was to develop quantitative PCR protocols for the strain-specific quantification of A. brasilense FP2. A novel approach was applied to identify strain-specific DNA sequences based on a comparison of the genomic sequences within the same species. The draft genome sequences of A. brasilense FP2 and Sp245 were aligned, and FP2-specific regions were filtered and checked for other possible matches in public databases. Strain-specific regions were then selected to design and evaluate strain-specific primer pairs. The primer pairs AzoR2.1, AzoR2.2, AzoR5.1, AzoR5.2, and AzoR5.3 were specific for the A. brasilense FP2 strain. These primer pairs were used to monitor quantitatively the population of A. brasilense in wheat roots under sterile and nonsterile growth conditions. In addition, coinoculations with other plant growth-promoting bacteria in wheat were performed under nonsterile conditions. The results showed that A. brasilense FP2 inoculated into wheat roots is highly competitive and achieves high cell numbers (∼10(7) CFU/g [fresh weight] of root) in the rhizosphere even under nonsterile conditions and when coinoculated with other rhizobacteria, maintaining the population at rather stable levels for at least up to 13 days after inoculation. The strategy used here can be applied to other organisms whose genome sequences are available.


Assuntos
Azospirillum brasilense/genética , Raízes de Plantas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Triticum/microbiologia , Azospirillum brasilense/crescimento & desenvolvimento , Azospirillum brasilense/isolamento & purificação , Azospirillum brasilense/metabolismo , Primers do DNA/genética , Regulação Bacteriana da Expressão Gênica , Raízes de Plantas/crescimento & desenvolvimento , Especificidade da Espécie , Triticum/crescimento & desenvolvimento
8.
BMC Microbiol ; 15: 95, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25947294

RESUMO

BACKGROUND: Orthologous proteins of the Crp/Fnr family have been previously implicated in controlling expression and/or activity of the NifA transcriptional activator in some diazotrophs. This study aimed to address the role of three Fnr-like proteins from H. seropedicae SmR1 in controlling NifA activity and consequent NifA-mediated transcription activation. RESULTS: The activity of NifA-dependent transcriptional fusions (nifA::lacZ and nifB::lacZ) was analysed in a series of H. seropedicae fnr deletion mutant backgrounds. We found that combined deletions in both the fnr1 and fnr3 genes lead to higher expression of both the nifA and nifB genes and also an increased level of nifH transcripts. Expression profiles of nifB under different oxygen concentrations, together with oxygen consumption measurements suggest that the triple fnr mutant has higher respiratory activity when compared to the wild type, which we believe to be responsible for greater stability of the oxygen sensitive NifA protein. This conclusion was further substantiated by measuring the levels of NifA protein and its activity in fnr deletion strains in comparison with the wild-type. CONCLUSIONS: Fnr proteins are indirectly involved in controlling the activity of NifA in H. seropedicae, probably as a consequence of their influence on respiratory activity in relation to oxygen availability. Additionally we can suggest that there is some redundancy in the physiological function of the three Fnr paralogs in this organism, since altered respiration and effects on NifA activity are only observed in deletion strains lacking both fnr1 and fnr3.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Herbaspirillum/genética , Herbaspirillum/metabolismo , Oxigênio/metabolismo , Fatores de Transcrição/deficiência , Ativação Transcricional , Proteínas Ferro-Enxofre/deficiência , Fatores de Transcrição/metabolismo
9.
Biochim Biophys Acta ; 1824(2): 359-65, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22154803

RESUMO

The RNA chaperone Hfq is a homohexamer protein identified as an E. coli host factor involved in phage Qß replication and it is an important posttranscriptional regulator of several types of RNA, affecting a plethora of bacterial functions. Although twenty Hfq crystal structures have already been reported in the Protein Data Bank (PDB), new insights into these protein structures can still be discussed. In this work, the structure of Hfq from the ß-proteobacterium Herbaspirillum seropedicae, a diazotroph associated with economically important agricultural crops, was determined by X-ray crystallography and small-angle X-ray scattering (SAXS). Biochemical assays such as exclusion chromatography and RNA-binding by the electrophoretic shift assay (EMSA) confirmed that the purified protein is homogeneous and active. The crystal structure revealed a conserved Sm topology, composed of one N-terminal α-helix followed by five twisted ß-strands, and a novel π-π stacking intra-subunit interaction of two histidine residues, absent in other Hfq proteins. Moreover, the calculated ab initio envelope based on small-angle X-ray scattering (SAXS) data agreed with the Hfq crystal structure, suggesting that the protein has the same folding structure in solution.


Assuntos
Herbaspirillum/química , Fator Proteico 1 do Hospedeiro/química , Chaperonas Moleculares/química , Sequência de Aminoácidos , Cromatografia em Gel , Cristalografia por Raios X , Ensaio de Desvio de Mobilidade Eletroforética , Histidina/química , Fator Proteico 1 do Hospedeiro/genética , Modelos Moleculares , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Dobramento de Proteína , Estrutura Terciária de Proteína , RNA/química , RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Espalhamento a Baixo Ângulo
11.
J Bacteriol ; 194(13): 3547-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22689236

RESUMO

The draft sequence of the genome of Bradyrhizobium elkanii 587 is presented. This was obtained using Illumina Next-Gen DNA sequencing combined with Sanger sequencing. Genes for the pathways involved in biological nitrogen fixation (the nif gene cluster), nod genes including nodABC, and genes for the type III protein secretion system (T3SS) are present.


Assuntos
Bradyrhizobium/genética , Genoma Bacteriano , Fixação de Nitrogênio , Análise de Sequência de DNA , Simbiose , Proteínas de Bactérias/genética , Bradyrhizobium/classificação , Bradyrhizobium/metabolismo , Brasil , Dados de Sequência Molecular , Fixação de Nitrogênio/genética , Análise de Sequência de DNA/métodos , Glycine max/microbiologia
12.
Genes (Basel) ; 12(1)2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430351

RESUMO

Among other attributes, the Betaproteobacterial genus Azoarcus has biotechnological importance for plant growth-promotion and remediation of petroleum waste-polluted water and soils. It comprises at least two phylogenetically distinct groups. The "plant-associated" group includes strains that are isolated from the rhizosphere or root interior of the C4 plant Kallar Grass, but also strains from soil and/or water; all are considered to be obligate aerobes and all are diazotrophic. The other group (now partly incorporated into the new genus Aromatoleum) comprises a diverse range of species and strains that live in water or soil that is contaminated with petroleum and/or aromatic compounds; all are facultative or obligate anaerobes. Some are diazotrophs. A comparative genome analysis of 32 genomes from 30 Azoarcus-Aromatoleum strains was performed in order to delineate generic boundaries more precisely than the single gene, 16S rRNA, that has been commonly used in bacterial taxonomy. The origin of diazotrophy in Azoarcus-Aromatoleum was also investigated by comparing full-length sequences of nif genes, and by physiological measurements of nitrogenase activity using the acetylene reduction assay. Based on average nucleotide identity (ANI) and whole genome analyses, three major groups could be discerned: (i) Azoarcus comprising Az. communis, Az. indigens and Az. olearius, and two unnamed species complexes, (ii) Aromatoleum Group 1 comprising Ar. anaerobium, Ar. aromaticum, Ar. bremense, and Ar. buckelii, and (iii) Aromatoleum Group 2 comprising Ar. diolicum, Ar. evansii, Ar. petrolei, Ar. toluclasticum, Ar. tolulyticum, Ar. toluolicum, and Ar. toluvorans. Single strain lineages such as Azoarcus sp. KH32C, Az. pumilus, and Az. taiwanensis were also revealed. Full length sequences of nif-cluster genes revealed two groups of diazotrophs in Azoarcus-Aromatoleum with nif being derived from Dechloromonas in Azoarcus sensu stricto (and two Thauera strains) and from Azospira in Aromatoleum Group 2. Diazotrophy was confirmed in several strains, and for the first time in Az. communis LMG5514, Azoarcus sp. TTM-91 and Ar. toluolicum TT. In terms of ecology, with the exception of a few plant-associated strains in Azoarcus (s.s.), across the group, most strains/species are found in soil and water (often contaminated with petroleum or related aromatic compounds), sewage sludge, and seawater. The possession of nar, nap, nir, nor, and nos genes by most Azoarcus-Aromatoleum strains suggests that they have the potential to derive energy through anaerobic nitrate respiration, so this ability cannot be usefully used as a phenotypic marker to distinguish genera. However, the possession of bzd genes indicating the ability to degrade benzoate anaerobically plus the type of diazotrophy (aerobic vs. anaerobic) could, after confirmation of their functionality, be considered as distinguishing phenotypes in any new generic delineations. The taxonomy of the Azoarcus-Aromatoleum group should be revisited; retaining the generic name Azoarcus for its entirety, or creating additional genera are both possible outcomes.


Assuntos
Azoarcus/genética , Genes Bacterianos , Genômica , Fixação de Nitrogênio/genética , Rhodocyclaceae/genética , Anaerobiose/genética , Azoarcus/classificação , Azoarcus/metabolismo , Benzoatos/metabolismo , Biodegradação Ambiental , Biotecnologia/métodos , Petróleo/metabolismo , Filogenia , Rizosfera , Rhodocyclaceae/classificação , Rhodocyclaceae/metabolismo , Microbiologia do Solo , Microbiologia da Água
13.
Sci Total Environ ; 694: 133609, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31400683

RESUMO

While environmental drivers regulate the structure of mangrove microbial communities, their exact nature and the extent of their influence require further elucidation. By means of 16S rRNA gene-based sequencing, we determined the microbial taxonomic profiles of mangroves in the subtropical Paranaguá Bay, Brazil, considering as potential drivers: salinity, as represented by two sectors in the extremes of a salinity gradient (<5 PSU and >30 PSU); proximity to/absence of the prevailing plants, Avicennia schaueriana, Laguncularia racemosa, Rhizophora mangle, and Spartina alterniflora; and the chemical composition of the sediments. Salinity levels within the estuary had the strongest influence on microbial structure, and pH was important to separate two communities within the high salinity environment. About one fourth of the total variation in community structure resulted from covariation of salinity and the overall chemical composition, which might indicate that the chemical profile was also related to salinity. The most prevalent bacterial phyla associated with the mangrove soils analyzed included Proteobacteria, Actinobacteria, Chloroflexi, Bacteroidetes, Acidobacteria, and Cyanobacteria. Taxonomic and functional comparisons of our results for whole-genome sequencing with available data from other biomes showed that the studied microbiomes cluster first according to biome type, then to matrix type and salinity status. Metabolic functions were more conserved than organisms within mangroves and across all biomes, indicating that core functions are preserved in any of the given conditions regardless of the specific organisms harboring them.


Assuntos
Baías/microbiologia , Monitoramento Ambiental , Metagenômica , Microbiota , Salinidade , Baías/química , Brasil , Concentração de Íons de Hidrogênio
14.
Sci Rep ; 9(1): 4041, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858484

RESUMO

Three species of the ß-Proteobacterial genus Herbaspirillum are able to fix nitrogen in endophytic associations with such important agricultural crops as maize, rice, sorghum, sugar-cane and wheat. In addition, Herbaspirillum rubrisubalbicans causes the mottled-stripe disease in susceptible sugar-cane cultivars as well as the red-stripe disease in some sorghum cultivars. The xylem of these cultivars exhibited a massive colonisation of mucus-producing bacteria leading to blocking the vessels. A cluster of eight genes (bcs) are involved in cellulose synthesis in Herbaspirillum rubrisubalbicans. Mutation of bcsZ, that encodes a 1,4-endoglucanase, impaired the exopolysaccharide production, the ability to form early biofilm and colonize sorghum when compared to the wild-type strain M1. This mutation also impaired the ability of Herbaspirillum rubrisubalbicans M1 to cause the red-stripe disease in Sorghum bicolor. We show cellulose synthesis is involved in the biofilm formation and as a consequence significantly modulates bacterial-plant interactions, indicating the importance of cellulose biosynthesis in this process.


Assuntos
Celulose/genética , Herbaspirillum/genética , Doenças das Plantas/genética , Sorghum/genética , Proteínas de Bactérias/biossíntese , Biofilmes/crescimento & desenvolvimento , Celulose/biossíntese , Herbaspirillum/patogenicidade , Fixação de Nitrogênio/genética , Doenças das Plantas/microbiologia , Sorghum/microbiologia , Xilema/genética
15.
Front Microbiol ; 9: 472, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29599762

RESUMO

The ability of bacteria to produce polyhydroxyalkanoates such as poly(3-hydroxybutyrate) (PHB) enables provision of a carbon storage molecule that can be mobilized under demanding physiological conditions. However, the precise function of PHB in cellular metabolism has not been clearly defined. In order to determine the impact of PHB production on global physiology, we have characterized the properties of a ΔphaC1 mutant strain of the diazotrophic bacterium Herbaspirillum seropedicae. The absence of PHB in the mutant strain not only perturbs redox balance and increases oxidative stress, but also influences the activity of the redox-sensing Fnr transcription regulators, resulting in significant changes in expression of the cytochrome c-branch of the electron transport chain. The synthesis of PHB is itself dependent on the Fnr1 and Fnr3 proteins resulting in a cyclic dependency that couples synthesis of PHB with redox regulation. Transcriptional profiling of the ΔphaC1 mutant reveals that the loss of PHB synthesis affects the expression of many genes, including approximately 30% of the Fnr regulon.

16.
Pathog Dis ; 75(6)2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28859310

RESUMO

The correct identification of bacteria from the Burkholderia cepacia complex (Bcc) is crucial for epidemiological studies and treatment of cystic fibrosis infections. However, genome-based identification tools are revealing many controversial Bcc species assignments. The aim of this work is to re-examine the taxonomic position of the soil bacterium B. cepacia 89 through polyphasic and genomic approaches. recA and 16S rRNA gene sequence analysis positioned strain 89 inside the Bcc group. However, based on the divergence score of seven concatenated allele sequences, and values of average nucleotide identity, and digital DNA:DNA hybridization, our results suggest that strain 89 is different from other Bcc species formerly described. Thus, we propose to classify Burkholderia sp. 89 as the novel species Burkholderia catarinensis sp. nov. with strain 89T (=DSM 103188T = BR 10601T) as the type strain. Moreover, our results call the attention to some probable misidentifications of Bcc genomes at the National Center for Biotechnology Information database.


Assuntos
Complexo Burkholderia cepacia/genética , Burkholderia/genética , Efeito Fundador , Genoma Bacteriano , Filogenia , Microbiologia do Solo , Burkholderia/classificação , Burkholderia/isolamento & purificação , Burkholderia/metabolismo , Complexo Burkholderia cepacia/classificação , Complexo Burkholderia cepacia/isolamento & purificação , Complexo Burkholderia cepacia/metabolismo , Código de Barras de DNA Taxonômico , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Redes e Vias Metabólicas/genética , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , Análise de Sequência de DNA , Especificidade da Espécie , Terminologia como Assunto
17.
Plant Physiol Biochem ; 118: 422-426, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28711791

RESUMO

Soil bacteria colonization in plants is a complex process, which involves interaction between many bacterial characters and plant responses. In this work, we labeled Azospirillum brasilense FP2 (wild type) and HM053 (excretion-ammonium) strains by insertion of the reporter gene gusA-kanamycin into the dinitrogenase reductase coding gene, nifH, and evaluated bacteria colonization in barley (Hordeum vulgare). In addition, we determined inoculation effect based on growth promotion parameters. We report an uncommon endophytic behavior of A. brasilense Sp7 derivative inside the root hair cells of barley and highlight the promising use of A. brasilense HM053 as plant growth-promoting bacterium.


Assuntos
Amônia/metabolismo , Azospirillum brasilense/metabolismo , Proteínas de Bactérias/metabolismo , Hordeum/microbiologia , Oxirredutases/metabolismo , Raízes de Plantas/microbiologia , Azospirillum brasilense/genética , Azospirillum brasilense/isolamento & purificação , Proteínas de Bactérias/genética , Oxirredutases/genética
18.
Res Microbiol ; 167(6): 501-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27130283

RESUMO

Despite its importance in growth and cell division, iron metabolism is still poorly understood in microorganisms, especially in Gram-positive bacteria. In this work, we used RNA sequencing technology to elucidate global mechanisms involved in iron starvation resistance in Paenibacillus riograndensis SBR5, a potential plant growth-promoting bacterium. Iron deficiency caused several changes in gene expression, and 150 differentially expressed genes were found: 71 genes were overexpressed and 79 genes were underexpressed. Eight genes for which expression was at least twice as high or twice as low in iron-limited condition compared with iron-sufficient condition were chosen for RT-qPCR analysis to validate the RNA seq data. In general, most genes exhibited the same pattern of expression after 24 h of P. riograndensis growth under iron-limiting condition. Our results suggest that, during iron deficiency, bacteria express several genes related to nutrient uptake when they start to grow to obtain all of the molecules necessary for maintaining major cellular processes. However, once iron becomes highly limiting and is no longer able to sustain exponential growth, bacteria begin to express genes related to several processes, like sporulation and DNA protection, as a way of resisting this stress.


Assuntos
Regulação Bacteriana da Expressão Gênica , Ferro/metabolismo , Paenibacillus/crescimento & desenvolvimento , Paenibacillus/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Deficiências de Ferro , Paenibacillus/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Microbiol Res ; 171: 65-72, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25644954

RESUMO

PII proteins are signal transduction that sense cellular nitrogen status and relay this signals to other targets. Azospirillum brasilense is a nitrogen fixing bacterium, which associates with grasses and cereals promoting beneficial effects on plant growth and crop yields. A. brasilense contains two PII encoding genes, named glnB and glnZ. In this paper, glnB was mutagenised in order to identify amino acid residues involved in GlnB signaling. Two variants were obtained by random mutagenesis, GlnBL13P and GlnBV100A and a site directed mutant, GlnBY51F, was obtained. Their ability to complement nitrogenase activity of glnB mutant strains of A. brasilense were determined. The variant proteins were also overexpressed in Escherichia coli, purified and characterized biochemically. None of the GlnB variant forms was able to restore nitrogenase activity in glnB mutant strains of A. brasilense LFH3 and 7628. The purified GlnBY51F and GlnBL13P proteins could not be uridylylated by GlnD, whereas GlnBV100A was uridylylated but at only 20% of the rate for wild type GlnB. Biochemical and computational analyses suggest that residue Leu13, located in the α helix 1 of GlnB, is important to maintain GlnB trimeric structure and function. The substitution V100A led to a lower affinity for ATP binding. Together the results suggest that NifA activation requires uridylylated GlnB bound to ATP.


Assuntos
Azospirillum brasilense/genética , Azospirillum brasilense/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutação , Proteínas PII Reguladoras de Nitrogênio/genética , Fatores de Transcrição/metabolismo , Trifosfato de Adenosina/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/química , Análise Mutacional de DNA , Expressão Gênica , Nitrogenase/genética , Proteínas PII Reguladoras de Nitrogênio/química , Ligação Proteica , Conformação Proteica
20.
PLoS One ; 9(10): e110392, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25310013

RESUMO

H. seropedicae associates endophytically and epiphytically with important poaceous crops and is capable of promoting their growth. The molecular mechanisms involved in plant colonization by this microrganism are not fully understood. Exopolysaccharides (EPS) are usually necessary for bacterial attachment to solid surfaces, to other bacteria, and to form biofilms. The role of H. seropedicae SmR1 exopolysaccharide in biofilm formation on both inert and plant substrates was assessed by characterization of a mutant in the espB gene which codes for a glucosyltransferase. The mutant strain was severely affected in EPS production and biofilm formation on glass wool. In contrast, the plant colonization capacity of the mutant strain was not altered when compared to the parental strain. The requirement of EPS for biofilm formation on inert surface was reinforced by the induction of eps genes in biofilms grown on glass and polypropylene. On the other hand, a strong repression of eps genes was observed in H. seropedicae cells adhered to maize roots. Our data suggest that H. seropedicae EPS is a structural component of mature biofilms, but this development stage of biofilm is not achieved during plant colonization.


Assuntos
Biofilmes , Herbaspirillum/fisiologia , Polissacarídeos Bacterianos/biossíntese , Produtos Agrícolas/microbiologia , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Genes Bacterianos , Genoma Bacteriano , Mutagênese , Raízes de Plantas/microbiologia , Estresse Fisiológico , Simbiose , Zea mays/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA