RESUMO
Differentiation of endodermal cells into hepatoblasts is well studied, but the remodeling of the vitelline and umbilical veins during liver development is less well understood. We compared human embryos between 3 and 10 weeks of development with pig and mouse embryos at comparable stages, and used Amira 3D reconstruction and Cinema 4D remodeling software for visualization. The vitelline and umbilical veins enter the systemic venous sinus on each side via a common entrance, the hepatocardiac channel. During expansion into the transverse septum at Carnegie Stage (CS)12 the liver bud develops as two dorsolateral lobes or 'wings' and a single ventromedial lobe, with the liver hilum at the intersection of these lobes. The dorsolateral lobes each engulf a vitelline vein during CS13 and the ventromedial lobe both umbilical veins during CS14, but both venous systems remain temporarily identifiable inside the liver. The dominance of the left-sided umbilical vein and the rightward repositioning of the sinuatrial junction cause de novo development of left-to-right shunts between the left umbilical vein in the liver hilum and the right hepatocardiac channel (venous duct) and the right vitelline vein (portal sinus), respectively. Once these shunts have formed, portal branches develop from the intrahepatic portions of the portal vein on the right side and the umbilical vein on the left side. The gall bladder is a reliable marker for this hepatic vascular midline. We found no evidence for large-scale fragmentation of embryonic veins as claimed by the 'vestigial' theory. Instead and in agreement with the 'lineage' theory, the vitelline and umbilical veins remained temporally identifiable inside the liver after being engulfed by hepatoblasts. In agreement with the 'hemodynamic' theory, the left-right shunts develop de novo.
Assuntos
Fígado/embriologia , Veias Umbilicais/embriologia , Ducto Vitelino/embriologia , Animais , Humanos , Camundongos , SuínosRESUMO
Couinaud based his well-known subdivision of the liver into (surgical) segments on the branching order of portal veins and the location of hepatic veins. However, both segment boundaries and number remain controversial due to an incomplete understanding of the role of liver lobes and vascular physiology on hepatic venous development. Human embryonic livers (5-10 weeks of development) were visualized with Amira 3D-reconstruction and Cinema 4D-remodeling software. Starting at 5 weeks, the portal and umbilical veins sprouted portal-vein branches that, at 6.5 weeks, had been pruned to 3 main branches in the right hemi-liver, whereas all (>10) persisted in the left hemi-liver. The asymmetric branching pattern of the umbilical vein resembled that of a "distributing" vessel, whereas the more symmetric branching of the portal trunk resembled a "delivering" vessel. At 6 weeks, 3-4 main hepatic-vein outlets drained into the inferior caval vein, of which that draining the caudate lobe formed the intrahepatic portion of the caval vein. More peripherally, 5-6 major tributaries drained both dorsolateral regions and the left and right ventromedial regions, implying a "crypto-lobar" distribution. Lobar boundaries, even in non-lobated human livers, and functional vascular requirements account for the predictable topography and branching pattern of the liver veins, respectively.