Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 85(11)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30952662

RESUMO

Lantibiotics subtilin and nisin are produced by Bacillus subtilis and Lactococcus lactis, respectively. To prevent toxicity of their own lantibiotic, both bacteria express specific immunity proteins, called SpaI and NisI. In addition, ABC transporters SpaFEG and NisFEG prevent lantibiotic toxicity by transporting the respective peptides to the extracellular space. Although the three-dimensional structures of SpaI and NisI have been solved, very little is known about the molecular function of either lipoprotein. Using laser-induced liquid bead ion desorption (LILBID)-mass spectrometry, we show here that subtilin interacts with SpaI monomers. The expression of either SpaI or NisI in a subtilin-nonproducing B. subtilis strain resulted in the respective strain being more resistant against either subtilin or nisin. Furthermore, pore formation provided by subtilin and nisin was prevented specifically upon the expression of either SpaI or NisI. As shown with a nisin-subtilin hybrid molecule, the C-terminal part of subtilin but not any particular lanthionine ring was needed for SpaI-mediated immunity. With respect to growth, SpaI provided less immunity against subtilin than is provided by the ABC transporter SpaFEG. However, SpaI prevented pore formation much more efficiently than SpaFEG. Taken together, our data show the physiological function of SpaI as a fast immune response to protect the cellular membrane.IMPORTANCE The two lantibiotics nisin and subtilin are produced by Lactococcus lactis and Bacillus subtilis, respectively. Both peptides have strong antimicrobial activity against Gram-positive bacteria, and therefore, appropriate protection mechanisms are required for the producing strains. To prevent toxicity of their own lantibiotic, both bacteria express immunity proteins, called SpaI and NisI, and in addition, ABC transporters SpaFEG and NisFEG. Whereas it has been shown that the ABC transporters protect the producing strains by transporting the toxic peptides to the extracellular space, the exact mode of action and the physiological function of the lipoproteins during immunity are still unknown. Understanding the exact role of lantibiotic immunity proteins is of major importance for improving production rates and for the design of newly engineered peptide antibiotics. Here, we show (i) the specificity of each lipoprotein for its own lantibiotic, (ii) the specific physical interaction of subtilin with its lipoprotein SpaI, (iii) the physiological function of SpaI in protecting the cellular membrane, and (iv) the importance of the C-terminal part of subtilin for its interaction with SpaI.


Assuntos
Bacillus subtilis/imunologia , Bacillus subtilis/metabolismo , Bacteriocinas/metabolismo , Imunidade , Nisina/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antibacterianos/farmacologia , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Bacteriocinas/genética , Farmacorresistência Bacteriana , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Lactococcus lactis , Lipoproteínas/genética , Lipoproteínas/imunologia , Lipoproteínas/isolamento & purificação , Lipoproteínas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/metabolismo
2.
Biochemistry ; 57(40): 5780-5784, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30226041

RESUMO

Biomembranes composed of lipids and proteins play central roles in physiological processes, and the precise balance between different lipid species is crucial for maintaining membrane function. One pathway for the biosynthesis of the abundant lipid phosphatidylcholine in eukaryotes involves a membrane-integrated phospholipid methyltransferase named Opi3 in yeast. A still unanswered question is whether Opi3 can catalyze phosphatidylcholine synthesis in trans, at membrane contact sites. While evidence for this activity was obtained from studies with complex in vitro-reconstituted systems based on endoplasmic reticulum membranes, isolated and purified Opi3 could not be analyzed. We present new insights into Opi3 activity by characterizing the in vitro-synthesized enzyme in defined hydrophobic environments. Saccharomyces cerevisiae Opi3 was cell-free synthesized and either solubilized in detergent micelles or co-translationally inserted into preformed nanodisc membranes of different lipid compositions. While detergent-solubilized Opi3 was inactive, the enzyme inserted into nanodisc membranes showed activity and stayed monomeric as revealed by native mass spectrometry. The methylation of its lipid substrate dioleoylphosphatidylmonomethylethanolamine to phosphatidylcholine was monitored by one-dimensional 31P nuclear magnetic resonance. Phosphatidylcholine formation was observed not only in nanodiscs containing inserted Opi3 but also in nanodiscs devoid of the enzyme containing the lipid substrate. This result gives a clear indication for in trans catalysis by Opi3; i.e., it acts on the substrate in juxtaposed membranes, while in cis lipid conversion may also contribute. Our established system for the characterization of pure Opi3 in defined lipid environments may be applicable to other lipid biosynthetic enzymes and help in understanding the subcellular organization of lipid synthesis.


Assuntos
Membrana Celular/química , Lipídeos de Membrana/química , Nanoestruturas/química , Fosfatidil-N-Metiletanolamina N-Metiltransferase/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Sistema Livre de Células/enzimologia
3.
Biophys J ; 113(6): 1331-1341, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28450130

RESUMO

Nanodiscs that hold a lipid bilayer surrounded by a boundary of scaffold proteins have emerged as a powerful tool for membrane protein solubilization and analysis. By combining nanodiscs and cell-free expression technologies, even completely detergent-free membrane protein characterization protocols can be designed. Nanodiscs are compatible with various techniques, and due to their bilayer environment and increased stability, they are often superior to detergent micelles or liposomes for membrane protein solubilization. However, transport assays in nanodiscs have not been conducted so far, due to limitations of the two-dimensional nature of nanodisc membranes that offers no compartmentalization. Here, we study Krokinobacter eikastus rhodopsin-2 (KR2), a microbial light-driven sodium or proton pump, with noncovalent mass-spectrometric, electrophysiological, and flash photolysis measurements after its cotranslational insertion into nanodiscs. We demonstrate the feasibility of adsorbing nanodiscs containing KR2 to an artificial bilayer. This allows us to record light-induced capacitive currents that reflect KR2's ion transport activity. The solid-supported membrane assay with nanodisc samples provides reliable control over the ionic condition and information of the relative ion activity of this promiscuous pump. Our strategy is complemented with flash photolysis data, where the lifetimes of different photointermediates were determined at different ionic conditions. The advantage of using identical samples to three complementary approaches allows for a comprehensive comparability. The cell-free synthesis in combination with nanodiscs provides a defined hydrophobic lipid environment minimizing the detergent dependence often seen in assays with membrane proteins. KR2 is a promising tool for optogenetics, thus directed engineering to modify ion selectivity can be highly beneficial. Our approach, using the fast generation of functional ion pumps incorporated into nanodiscs and their subsequent analysis by several biophysical techniques, can serve as a versatile screening and engineering platform. This may open new avenues for the study of ion pumps and similar electrogenic targets.


Assuntos
Membranas Artificiais , Imagem Óptica , Rodopsinas Microbianas/química , Cromatografia em Gel , Escherichia coli , Estudos de Viabilidade , Flavobacteriaceae , Transporte de Íons , Espectrometria de Massas , Potenciais da Membrana , Nanoestruturas , Optogenética , Fotólise , Rodopsinas Microbianas/isolamento & purificação
4.
J Neurochem ; 140(2): 280-293, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27917477

RESUMO

The integral synaptic vesicle protein SV31 has been shown to bind divalent cations. Here, we demonstrate that SV31 protein synthesized within a cell-free system binds Zn2+ and to a lower extent Ni2+ and Cu2+ ions. Expression with Zn2+ stabilized the protein and increased solubility. SV31 was preferentially monomeric in detergent and revealed specific binding of Zn2+ . When co-translationally inserted into defined nanodisc bilayers, SV31 assembled into dimeric complexes, resulting in increased binding of Zn2+ . Putative Zn2+ -binding motifs within SV31 comprise aspartic acid and histidine residues. Site-directed mutagenesis of two conserved aspartic acid residues leads to a potent decrease in Zn2+ binding but did not affect dimerization. Chemical modification of histidine residues abolished some of the Zn2+ -binding capacity. We demonstrate proton-dependent transport of Zn2+ as by accumulation of fluorescent FluoZin-1 inside of SV31-containing proteoliposomes. Transport activity has a Km value of 44.3 µM and required external Zn2+ and internal acidic pH. Our results demonstrate that the synaptic vesicle-integral protein SV31 functions as a proton-dependent Zn2+ transporter. SV31 may attribute specific and yet undiscovered functions to subsets of synapses.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Vesículas Sinápticas/metabolismo , Zinco/metabolismo , Animais , Transporte Biológico , Cátions Bivalentes/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mutagênese Sítio-Dirigida/métodos , Multimerização Proteica , Ratos
5.
Anal Chem ; 89(22): 12314-12318, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29039652

RESUMO

Cotranslational insertion of membrane proteins into defined nanoparticle membranes has been developed as an efficient process to produce highly soluble samples in native-like environments and to study lipid-dependent effects on protein structure and function. Numerous examples of the structural and functional characterization of transporters, ion channels, or G-protein-coupled receptors in cotranslationally formed nanodisc complexes demonstrate the versatility of this approach, although the basic underlying mechanisms of membrane insertion are mainly unknown. We have revealed the first aspects of the insertion of proteins into nanodiscs by combining cell-free expression, noncovalent mass spectrometry, and NMR spectroscopy. We provide evidence of cooperative insertion of homo-oligomeric complexes and demonstrate the possibility to modulate their stoichiometry by modifying reaction conditions. Additionally, we show that significant amounts of lipid are released from the nanodiscs upon insertion of larger protein complexes.


Assuntos
Lasers , Proteínas de Membrana/análise , Ressonância Magnética Nuclear Biomolecular , Espectrometria de Massas por Ionização por Electrospray
6.
FEBS J ; 288(10): 3300-3316, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33244868

RESUMO

The bacteriophage ΦX174 causes large pore formation in Escherichia coli and related bacteria. Lysis is mediated by the small membrane-bound toxin ΦX174-E, which is composed of a transmembrane domain and a soluble domain. The toxin requires activation by the bacterial chaperone SlyD and inhibits the cell wall precursor forming enzyme MraY. Bacterial cell wall biosynthesis is an important target for antibiotics; therefore, knowledge of molecular details in the ΦX174-E lysis pathway could help to identify new mechanisms and sites of action. In this study, cell-free expression and nanoparticle technology were combined to avoid toxic effects upon ΦX174-E synthesis, resulting in the efficient production of a functional full-length toxin and engineered derivatives. Pre-assembled nanodiscs were used to study ΦX174-E function in defined lipid environments and to analyze its membrane insertion mechanisms. The conformation of the soluble domain of ΦX174-E was identified as a central trigger for membrane insertion, as well as for the oligomeric assembly of the toxin. Stable complex formation of the soluble domain with SlyD is essential to keep nascent ΦX174-E in a conformation competent for membrane insertion. Once inserted into the membrane, ΦX174-E assembles into high-order complexes via its transmembrane domain and oligomerization depends on the presence of an essential proline residue at position 21. The data presented here support a model where an initial contact of the nascent ΦX174-E transmembrane domain with the peptidyl-prolyl isomerase domain of SlyD is essential to allow a subsequent stable interaction of SlyD with the ΦX174-E soluble domain for the generation of a membrane insertion competent toxin.


Assuntos
Antibiose/genética , Bacteriófago phi X 174/genética , Proteínas de Escherichia coli/genética , Escherichia coli/virologia , Lisogenia/genética , Peptidilprolil Isomerase/genética , Toxinas Biológicas/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriófago phi X 174/metabolismo , Bacteriófago phi X 174/patogenicidade , Sítios de Ligação , Parede Celular/genética , Parede Celular/metabolismo , Parede Celular/virologia , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Nanopartículas/química , Peptidilprolil Isomerase/metabolismo , Fosfatidilgliceróis/química , Fosfatidilgliceróis/metabolismo , Ligação Proteica , Conformação Proteica , Engenharia de Proteínas/métodos , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Solubilidade , Toxinas Biológicas/genética , Toxinas Biológicas/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
7.
J Am Soc Mass Spectrom ; 30(1): 181-191, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30225732

RESUMO

Native mass spectrometry is applied for the investigation of proteins and protein complexes worldwide. The challenge in native mass spectrometry is maintaining the features of the proteins of interest, such as oligomeric state, bound ligands, or the conformation of the protein complex, during transfer from solution to gas phase. This is an essential prerequisite to allow conclusions about the solution state protein complex, based on the gas phase measurements. Therefore, soft ionization techniques are required. Widely used for the analysis of protein complexes are nanoelectro spray ionization (nESI) mass spectrometers. A newer ionization method is laser induced liquid bead ion desorption (LILBID), which is based on the release of protein complexes from solution phase via infrared (IR) laser desorption. We use both methods in our lab, depending on the requirements of the biological system we are interested in. Here we benchmark the performance of our LILBID mass spectrometer in comparison to a nESI instrument, regarding sample conditions, buffer and additive tolerances, dissociation mechanism and applicability towards soluble and membrane protein complexes. Graphical Abstract ᅟ.


Assuntos
Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Proteínas de Membrana/química , Antiporters/análise , Antiporters/química , Avidina/análise , Avidina/química , Proteínas de Bactérias/análise , Proteínas de Bactérias/química , Soluções Tampão , Detergentes/química , Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/química , Glicerol/química , Lasers , Proteínas de Membrana/análise , Canais de Potássio/análise , Canais de Potássio/química , Espectrometria de Massas por Ionização por Electrospray/instrumentação
8.
Chem Commun (Camb) ; 54(97): 13702-13705, 2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30452022

RESUMO

Other than more widely used methods, the use of styrene maleic acid allows the direct extraction of membrane proteins from the lipid bilayer into SMALPs keeping it in its native lipid surrounding. Here we present the combined use of SMALPs and LILBID-MS, allowing determination of oligomeric states of membrane proteins of different functionality directly from the native nanodiscs.


Assuntos
Lipídeos/química , Maleatos/química , Proteínas de Membrana/análise , Estireno/química , Bicamadas Lipídicas/química , Espectrometria de Massas , Modelos Moleculares , Tamanho da Partícula
9.
Elife ; 62017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28067619

RESUMO

Membrane proteins frequently assemble into higher order homo- or hetero-oligomers within their natural lipid environment. This complex formation can modulate their folding, activity as well as substrate selectivity. Non-disruptive methods avoiding critical steps, such as membrane disintegration, transfer into artificial environments or chemical modifications are therefore essential to analyze molecular mechanisms of native membrane protein assemblies. The combination of cell-free synthetic biology, nanodisc-technology and non-covalent mass spectrometry provides excellent synergies for the analysis of membrane protein oligomerization within defined membranes. We exemplify our strategy by oligomeric state characterization of various membrane proteins including ion channels, transporters and membrane-integrated enzymes assembling up to hexameric complexes. We further indicate a lipid-dependent dimer formation of MraY translocase correlating with the enzymatic activity. The detergent-free synthesis of membrane protein/nanodisc samples and the analysis by LILBID mass spectrometry provide a versatile platform for the analysis of membrane proteins in a native environment.


Assuntos
Proteínas de Membrana/metabolismo , Multimerização Proteica , Espectrometria de Massas , Ligação Proteica , Dobramento de Proteína , Biologia Sintética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA