Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
BMC Neurosci ; 18(1): 56, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28778148

RESUMO

BACKGROUND: The identification of biomarkers that predict susceptibility to major depressive disorder and treatment response to antidepressants is a major challenge. Vortioxetine is a novel multimodal antidepressant that possesses pro-cognitive properties and differentiates from other conventional antidepressants on various cognitive and plasticity measures. The aim of the present study was to identify biological systems rather than single biomarkers that may underlie vortioxetine's treatment effects. RESULTS: We show that the biological systems regulated by vortioxetine are overlapping between mouse and rat in response to distinct treatment regimens and in different brain regions. Furthermore, analysis of complexes of physically-interacting proteins reveal that biomarkers involved in transcriptional regulation, neurodevelopment, neuroplasticity, and endocytosis are modulated by vortioxetine. A subsequent qPCR study examining the expression of targets in the protein-protein interactome space in response to chronic vortioxetine treatment over a range of doses provides further biological validation that vortioxetine engages neuroplasticity networks. Thus, the same biology is regulated in different species and sexes, different brain regions, and in response to distinct routes of administration and regimens. CONCLUSIONS: A recurring theme, based on the present study as well as previous findings, is that networks related to synaptic plasticity, synaptic transmission, signal transduction, and neurodevelopment are modulated in response to vortioxetine treatment. Regulation of these signaling pathways by vortioxetine may underlie vortioxetine's cognitive-enhancing properties.


Assuntos
Antidepressivos/farmacologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Piperazinas/farmacologia , Sulfetos/farmacologia , Animais , Córtex Cerebral/crescimento & desenvolvimento , Feminino , Expressão Gênica/efeitos dos fármacos , Hipocampo/crescimento & desenvolvimento , Masculino , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Mapeamento de Interação de Proteínas , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Estudos Retrospectivos , Especificidade da Espécie , Vortioxetina
2.
J Pharmacol Exp Ther ; 358(3): 472-82, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27402279

RESUMO

Major depressive disorder (MDD) is a common psychiatric disorder that often features impairments in cognitive function, and these cognitive symptoms can be important determinants of functional ability. Vortioxetine is a multimodal antidepressant that may improve some aspects of cognitive function in patients with MDD, including attention, processing speed, executive function, and memory. However, the cause of these effects is unclear, and there are several competing theories on the underlying mechanism, notably including regionally-selective downstream enhancement of glutamate neurotransmission and increased acetylcholine (ACh) neurotransmission. The current work sought to evaluate the ACh hypothesis by examining vortioxetine's ability to reverse scopolamine-induced impairments in rodent tests of memory and attention. Additionally, vortioxetine's effects on hippocampal extracellular ACh levels were examined alongside studies of vortioxetine's pharmacokinetic profile. We found that acute vortioxetine reversed scopolamine-induced impairments in social and object recognition memory, but did not alter scopolamine-induced impairments in attention. Acute vortioxetine also induced a modest and short-lived increase in hippocampal ACh levels. However, this short-term effect is at variance with vortioxetine's moderately long brain half life (5.1 hours). Interestingly, subchronic vortioxetine treatment failed to reverse scopolamine-induced social recognition memory deficits and had no effects on basal hippocampal ACh levels. These data suggest that vortioxetine has some effects on memory that could be mediated through cholinergic neurotransmission, however these effects are modest and only seen under acute dosing conditions. These limitations may argue against cholinergic mechanisms being the primary mediator of vortioxetine's cognitive effects, which are observed under chronic dosing conditions in patients with MDD.


Assuntos
Acetilcolina/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Espaço Extracelular/efeitos dos fármacos , Hipocampo/patologia , Piperazinas/farmacologia , Escopolamina/farmacologia , Sulfetos/farmacologia , Animais , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Espaço Extracelular/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Masculino , Piperazinas/uso terapêutico , Ratos , Ratos Wistar , Reconhecimento Psicológico/efeitos dos fármacos , Comportamento Social , Sulfetos/uso terapêutico , Transmissão Sináptica/efeitos dos fármacos , Vortioxetina
3.
CNS Spectr ; 21(2): 162-83, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26250622

RESUMO

Previous work from this laboratory hypothesized that the multimodal antidepressant vortioxetine enhances cognitive function through a complex mechanism, using serotonergic (5-hydroxytryptamine, 5-HT) receptor actions to modulate gamma-butyric acid (GABA) and glutamate neurotransmission in key brain regions like the prefrontal cortex (PFC) and hippocampus. However, serotonergic receptors have circumscribed expression patterns, and therefore vortioxetine's effects on GABA and glutamate neurotransmission will probably be regionally selective. In this article, we attempt to develop a conceptual framework in which the effects of 5-HT, selective serotonin reuptake inhibitors (SSRIs), and vortioxetine on GABA and glutamate neurotransmission can be understood in the PFC and striatum-2 regions with roles in cognition and substantially different 5-HT receptor expression patterns. Thus, we review the anatomy of the neuronal microcircuitry in the PFC and striatum, anatomical data on 5-HT receptor expression within these microcircuits, and electrophysiological evidence on the effects of 5-HT on the behavior of each cell type. This analysis suggests that 5-HT and SSRIs will have markedly different effects within the PFC, where they will induce mixed effects on GABA and glutamate neurotransmission, compared to the striatum, where they will enhance GABAergic interneuron activity and drive down the activity of medium spiny neurons. Vortioxetine is expected to reduce GABAergic interneuron activity in the PFC and concomitantly increase cortical pyramidal neuron firing. However in the striatum, vortioxetine is expected to increase activity at GABAergic interneurons and have mixed excitatory and inhibitory effects in medium spiny neurons. Thus the conceptual framework developed here suggests that vortioxetine will have regionally selective effects on GABA and glutamate neurotransmission.


Assuntos
Antidepressivos/farmacologia , Neostriado/efeitos dos fármacos , Piperazinas/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Receptores de Serotonina/metabolismo , Serotoninérgicos/farmacologia , Sulfetos/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ácido Glutâmico/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Humanos , Neostriado/metabolismo , Neurociências , Córtex Pré-Frontal/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT3 de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Biologia de Sistemas , Vortioxetina , Ácido gama-Aminobutírico/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo
4.
CNS Spectr ; 21(2): 143-61, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26346726

RESUMO

The hippocampus plays an important role in emotional and cognitive processing, and both of these domains are affected in patients with major depressive disorder (MDD). Extensive preclinical research and the notion that modulation of serotonin (5-HT) neurotransmission plays a key role in the therapeutic efficacy of selective serotonin reuptake inhibitors (SSRIs) support the view that 5-HT is important for hippocampal function in normal and disease-like conditions. The hippocampus is densely innervated by serotonergic fibers, and the majority of 5-HT receptor subtypes are expressed there. Furthermore, hippocampal cells often co-express multiple 5-HT receptor subtypes that can have either complementary or opposing effects on cell function, adding to the complexity of 5-HT neurotransmission. Here we review the current knowledge of how 5-HT, through its various receptor subtypes, modulates hippocampal output and the activity of hippocampal pyramidal cells in rodents. In addition, we discuss the relevance of 5-HT modulation for cognitive processing in rodents and possible clinical implications of these results in patients with MDD. Finally, we review the data on how SSRIs and vortioxetine, an antidepressant with multimodal activity, affect hippocampal function, including cognitive processing, from both a preclinical and clinical perspective.


Assuntos
Antidepressivos/farmacologia , Transtorno Depressivo Maior/metabolismo , Hipocampo/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Receptores de Serotonina/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Serotonina/metabolismo , Antidepressivos/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Hipocampo/metabolismo , Humanos , Células Piramidais/metabolismo , Receptores de Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Transmissão Sináptica
5.
Behav Pharmacol ; 26(5): 489-94, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26154437

RESUMO

Similar to the time-course for treating depression, several weeks of administration are required for serotonin (5-HT) reuptake inhibitors to produce anxiolytic effects. Previous studies with the schedule-induced polydipsia paradigm (a putative preclinical anxiety model) have shown that repeated administration of antidepressant drugs is necessary to produce a suppression of polydipsia, which is interpreted as an anxiolytic-like effect. The present study sought to expand past findings by evaluating the selective 5-HT reuptake inhibitor (SSRI) fluoxetine and the 5-HT-norepinephrine reuptake inhibitor duloxetine in the schedule-induced polydipsia paradigm with rats. Dose combinations of the α2 adrenoceptor antagonist yohimbine with fluoxetine were also explored to determine whether α2 adrenoceptor antagonism could enhance the anxiolytic-like effects produced by an SSRI. Fluoxetine and duloxetine significantly reduced water intake over the course of daily administrations. Daily treatment with the combination of fluoxetine and yohimbine produced a significantly greater reduction in water intake than fluoxetine alone. The present results confirmed previous findings that inhibition of 5-HT reuptake reduces water consumption in this paradigm. The results for the α2 antagonist yohimbine (in combination with fluoxetine) also indicate that α2 adrenoceptor antagonism may significantly enhance anxiolytic-like effects of SSRIs.


Assuntos
Ansiolíticos/farmacologia , Cloridrato de Duloxetina/farmacologia , Fluoxetina/farmacologia , Polidipsia/tratamento farmacológico , Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Antidepressivos/farmacologia , Modelos Animais de Doenças , Ingestão de Líquidos/efeitos dos fármacos , Ingestão de Líquidos/fisiologia , Água Potável , Privação de Alimentos , Masculino , Polidipsia/metabolismo , Ratos Sprague-Dawley , Receptores Adrenérgicos alfa 2/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Inibidores da Recaptação de Serotonina e Norepinefrina/farmacologia , Ioimbina/farmacologia
6.
J Pharmacol Exp Ther ; 350(3): 589-604, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24947465

RESUMO

Brexpiprazole (OPC-34712, 7-{4-[4-(1-benzothiophen-4-yl)piperazin-1-yl]butoxy}quinolin-2(1H)-one) is a novel drug candidate in clinical development for psychiatric disorders with high affinity for serotonin, dopamine, and noradrenaline receptors. In particular, it bound with high affinity (Ki < 1 nM) to human serotonin 1A (h5-HT1A)-, h5-HT2A-, long form of human D2 (hD2L)-, hα1B-, and hα2C-adrenergic receptors. It displayed partial agonism at h5-HT1A and hD2 receptors in cloned receptor systems and potent antagonism of h5-HT2A receptors and hα1B/2C-adrenoceptors. Brexpiprazole also had affinity (Ki < 5 nM) for hD3-, h5-HT2B-, h5-HT7-, hα1A-, and hα1D-adrenergic receptors, moderate affinity for hH1 (Ki = 19 nM), and low affinity for hM1 receptors (Ki > 1000 nM). Brexpiprazole potently bound to rat 5-HT2A and D2 receptors in vivo, and ex vivo binding studies further confirmed high 5-HT1A receptor binding potency. Brexpiprazole inhibited DOI (2,5-dimethoxy-4-iodoamphetamine)-induced head twitches in rats, suggestive of 5-HT2A antagonism. Furthermore, in vivo D2 partial agonist activity of brexpiprazole was confirmed by its inhibitory effect on reserpine-induced DOPA accumulation in rats. In rat microdialysis studies, brexpiprazole slightly reduced extracellular dopamine in nucleus accumbens but not in prefrontal cortex, whereas moderate increases of the dopamine metabolites, homovanillic acid and DOPAC (3,4-dihydroxy-phenyl-acetic acid), in these areas also suggested in vivo D2 partial agonist activity. In particular, based on a lower intrinsic activity at D2 receptors and higher binding affinities for 5-HT1A/2A receptors than aripiprazole, brexpiprazole would have a favorable antipsychotic potential without D2 receptor agonist- and antagonist-related adverse effects. In conclusion, brexpiprazole is a serotonin-dopamine activity modulator with a unique pharmacology, which may offer novel treatment options across a broad spectrum of central nervous system disorders.


Assuntos
Dopaminérgicos/química , Dopaminérgicos/metabolismo , Dopamina/metabolismo , Quinolonas/química , Quinolonas/metabolismo , Serotoninérgicos/química , Serotoninérgicos/metabolismo , Serotonina/metabolismo , Tiofenos/química , Tiofenos/metabolismo , Animais , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Antagonistas dos Receptores de Dopamina D2 , Relação Dose-Resposta a Droga , Humanos , Masculino , Ligação Proteica/fisiologia , Quinolonas/farmacologia , Ratos , Ratos Wistar , Receptor 5-HT1A de Serotonina/metabolismo , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/metabolismo , Tiofenos/farmacologia
7.
Int J Neuropsychopharmacol ; 17(10): 1695-706, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24852131

RESUMO

Current treatments for depression, including serotonin-specific reuptake inhibitors (SSRIs), are only partially effective, with a high incidence of residual symptoms, relapse, and treatment resistance. Loss of cognitive flexibility, a component of depression, is associated with dysregulation of the prefrontal cortex. Reversal learning, a form of cognitive flexibility, is impaired by chronic stress, a risk factor for depression, and the stress-induced impairment in reversal learning is sensitive to chronic SSRI treatment, and is mimicked by serotonin (5-HT) depletion. Vortioxetine, a novel, multimodal-acting antidepressant, is a 5-HT3, 5-HT7 and 5-HT1D receptor antagonist, a 5-HT1B receptor partial agonist, a 5-HT1A receptor agonist, and inhibits the 5-HT transporter. Using adult male rats, we first investigated the direct effects of vortioxetine, acting at post-synaptic 5-HT receptors, on reversal learning that was compromised by 5-HT depletion using 4-chloro-DL-phenylalanine methyl ester hydrochloride (PCPA), effectively eliminating any contribution of 5-HT reuptake blockade. PCPA induced a reversal learning impairment that was alleviated by acute or sub-chronic vortioxetine administration, suggesting that post-synaptic 5-HT receptor activation contributes to the effects of vortioxetine. We then investigated the effects of chronic dietary administration of vortioxetine on reversal learning that had been compromised in intact animals exposed to chronic intermittent cold (CIC) stress, to assess vortioxetine's total pharmacological effect. CIC stress impaired reversal learning, and chronic vortioxetine administration prevented the reversal-learning deficit. Together, these results suggest that the direct effect of vortioxetine at 5-HT receptors may contribute to positive effects on cognitive flexibility deficits, and may enhance the effect of 5-HT reuptake blockade.


Assuntos
Ansiolíticos/uso terapêutico , Deficiências da Aprendizagem/tratamento farmacológico , Piperazinas/uso terapêutico , Serotonina/deficiência , Estresse Psicológico/complicações , Sulfetos/uso terapêutico , Análise de Variância , Animais , Atenção/efeitos dos fármacos , Autorradiografia , Peso Corporal/efeitos dos fármacos , Temperatura Baixa/efeitos adversos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Masculino , Fenilalanina/análogos & derivados , Fenilalanina/farmacologia , Ratos , Ratos Sprague-Dawley , Reversão de Aprendizagem , Estresse Psicológico/etiologia , Vortioxetina
8.
CNS Spectr ; 19(2): 121-33, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23903233

RESUMO

Monoamine-based treatments for depression have evolved greatly over the past several years, but shortcomings such as suboptimal efficacy, treatment lag, and residual cognitive dysfunction are still significant. Preclinical and clinical studies using compounds directly targeting glutamatergic neurotransmission present new opportunities for antidepressant treatment, with ketamine having a surprisingly rapid and sustained antidepressant effect that is presumably mediated through glutamate-dependent mechanisms. While direct modulation of glutamate transmission for antidepressant and cognition-enhancing actions may be hampered by nonspecific effects, indirect modulation through the serotonin (5-HT) system may be a viable alternative approach. Based on localization and function, 5-HT can modulate glutamate neurotransmission at least through the 5-HT1A, 5-HT1B, 5-HT3, and 5-HT7 receptors, which presents a rational pharmacological opportunity for modulating glutamatergic transmission without the direct use of glutamatergic compounds. Combining one or more of these glutamate-modulating 5-HT targets with 5-HT transporter inhibition may offer new therapeutic opportunities. The multimodal compounds vortioxetine and vilazodone are examples of this approach with diverse mechanisms, and their different clinical effects will provide valuable insights into serotonergic modulation of glutamate transmission for the potential treatment of depression and associated cognitive dysfunction.


Assuntos
Transtornos Cognitivos/tratamento farmacológico , Depressão/tratamento farmacológico , Ácido Glutâmico/metabolismo , Serotonina/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Animais , Humanos , Serotoninérgicos/uso terapêutico , Transmissão Sináptica/fisiologia
9.
Int J Neuropsychopharmacol ; 16(5): 1115-27, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23089374

RESUMO

The therapeutic effect of current antidepressant drugs appears after several weeks of treatment and a significant number of patients do not respond to treatment. Here, we report the effects of the multi-modal antidepressant vortioxetine (Lu AA21004), a 5-HT(3) and 5-HT(7) receptor antagonist, 5-HT(1B) receptor partial agonist, 5-HT(1A) receptor agonist and 5-HT transporter (SERT) inhibitor, on rat 5-HT neurotransmission. Using in vivo electrophysiological recordings in the dorsal raphe nucleus of anaesthetized rats, we assessed the acute and subchronic effects of vortioxetine and/or the selective 5-HT(3) receptor agonist, SR57227 or the selective 5-HT(1A) receptor agonist flesinoxan, on 5-HT neuronal firing activity. Using ex-vivo autoradiography, we correlated SERT occupancy and presumed 5-HT firing activity. The selective serotonin reuptake inhibitor, fluoxetine, was used as comparator. Importantly, the recovery of 5-HT neuronal firing was achieved after 1 d with vortioxetine and 14 d with fluoxetine. SR57227 delayed this recovery. In contrast, vortioxetine failed to alter the reducing action of 3 d treatment of flesinoxan. Acute dosing of vortioxetine inhibited neuronal firing activity more potently than fluoxetine. SR57227 prevented the suppressant effect of vortioxetine, but not of fluoxetine. In contrast, flesinoxan failed to modify the suppressant effect of vortioxetine acutely administered. Differently to fluoxetine, vortioxetine suppressed neuronal firing without saturating occupancy at the SERT. Vortioxetine produced a markedly faster recovery of 5-HT neuronal firing than fluoxetine. This is at least partly due to 5-HT(3) receptor antagonism of vortioxetine in association with its reduced SERT occupancy.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Antidepressivos/farmacologia , Neurônios/efeitos dos fármacos , Piperazinas/farmacologia , Antagonistas do Receptor 5-HT3 de Serotonina/farmacologia , Serotonina/metabolismo , Sulfetos/farmacologia , Animais , Autorradiografia , Esquema de Medicação , Sistemas de Liberação de Medicamentos , Eletrólitos/efeitos adversos , Masculino , Piperidinas/farmacologia , Núcleos da Rafe/citologia , Núcleos da Rafe/lesões , Ratos , Ratos Sprague-Dawley , Receptores 5-HT3 de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Agonistas do Receptor de Serotonina/farmacologia , Fatores de Tempo , Vortioxetina
10.
ACS Chem Neurosci ; 10(10): 4319-4327, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31468969

RESUMO

Vortioxetine is a multimodal antidepressant with agonist activity at serotonin (5-HT)1A and 5-HT1B receptors that blocks the 5-HT transporter (SERT). Previously in male BTBR T+Itpr3tf/J (BTBR) mice, the 5-HT1A partial agonist buspirone and SERT blocker fluoxetine enhanced social interaction but did not reduce marble burying. We hypothesized that vortioxetine through its actions at SERT and 5-HT1A could improve BTBR sociability and via 5-HT1B could reduce burying better than sertraline, a selective SERT blocker. Vortioxetine (5-10 mg/kg) or sertraline (2 mg/kg) was administered 30 min presociability and 75 min prior to marble burying tests. Vortioxetine (10 mg/kg) occupancy (%) was 84 ± 1 for SERT, 31 ± 12 for 5-HT1A, and 80 ± 5 for 5-HT1B in brain at 110 min postinjection, and serum oxytocin was 24% lower (p < 0.01) in vortioxetine-treated mice. Vortioxetine reduced novel object investigation, whereas sertraline enhanced overall sociability. However, the vortioxetine-induced increase in social sniffing was transient, as it was lost with 60-120 min presociability test delays in subsequent experiments. Vortioxetine and sertraline both reduced BTBR marble burying. Based on vortioxetine occupancy, actions at SERT and/or 5-HT1B are more likely to underlie its behavioral effects than 5-HT1A. Overall, vortioxetine has great potential for suppressing restrictive-repetitive behaviors, but it appears less promising as a sociability enhancer.


Assuntos
Comportamento Animal/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Comportamento Social , Vortioxetina/farmacologia , Animais , Transtorno Autístico , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Transgênicos , Sertralina/farmacologia
11.
Pharmacol Biochem Behav ; 89(3): 424-31, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18313740

RESUMO

Previous research in this laboratory has shown that nicotine's effects on spontaneous activity are contingent on individual differences, attenuating activity in high active rats and increasing it in low active rats. This study was designed to further evaluate this phenomenon, and to compare it with nicotine's effects on nicotinic acetylcholine receptor (nAChR) expression in several brain regions. Male and female Sprague-Dawley rats selected for differences in baseline activity were administered nicotine twice daily for 14 days, and its effects on spontaneous activity were evaluated following 1, 13 and 27 doses. Furthermore, [(3)H] epibatidine binding and plasma cotinine levels were evaluated 24 h after the 28th dose. Contrary to previous findings, the effects of repeated nicotine on spontaneous activity were minimally contingent on baseline activity levels. Following an initial attenuation, males, but not females, exhibited sensitization to nicotine's effects on spontaneous activity. [(3)H] epibatidine was significantly increased in several brain regions in both male and female nicotine-treated animals, and in females selected for high activity at baseline. However, a clear relationship between these effects and spontaneous activity was not found, due to the lack of consistent effects of nicotine administration and baseline activity on spontaneous activity. Interestingly, significant correlations suggest that rats exhibiting higher spontaneous activity on the final test day were differentially marked by higher [(3)H] epibatidine. Cotinine levels were higher in low activity males than in high activity males, but no differences were observed between high and low activity females. Thus, no clear relationship between this variable and spontaneous activity could be discerned. Based on these data, no simple relationships between the effects of nicotine administration or baseline activity on [(3)H] epibatidine binding, nicotine metabolism, or spontaneous activity were observed. However, a relationship between [(3)H] epibatidine and spontaneous activity on the final test day is suggested.


Assuntos
Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Cotinina/sangue , Nicotina/farmacologia , Piridinas/metabolismo , Animais , Feminino , Masculino , Atividade Motora/efeitos dos fármacos , Nicotina/administração & dosagem , Ratos , Ratos Sprague-Dawley , Caracteres Sexuais
12.
Pharmacol Biochem Behav ; 91(1): 150-4, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18644403

RESUMO

The Lewis (LEW) strain of rat appears more sensitive to nicotine than other strains in self-administration, conditioned place preference, and drug discrimination behavioral studies. The present study sought to further evaluate the behavioral effects of chronic nicotine treatment in the LEW strain by assessing spontaneous activity, which has consistently revealed sensitization to chronic nicotine administration in Sprague Dawley (SD) rats. High active and low active male and female LEW rats (N=8 per group) were treated twice daily with either nicotine (0.4 mg/kg, sc) or vehicle for 14 consecutive days. Regardless of baseline activity level or sex, spontaneous activity was significantly decreased, compared to saline-treated rats, after a single nicotine injection. However, spontaneous activity increased in both low- and high-activity rats (both sexes) over the two weeks of nicotine administration to levels that were significantly higher than saline-treated rats. Based on these findings, acute and chronic nicotine administration had greater suppressive and enhancing effects on spontaneous activity in LEW rats compared to other strains of rats previously studied. These results further clarify the behavioral sensitivity of the LEW strain of rat to nicotine exposure and lend credence to the role of genetics in the individual susceptibility to nicotine dependence.


Assuntos
Atividade Motora/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Análise de Variância , Animais , Interpretação Estatística de Dados , Feminino , Masculino , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Ratos , Ratos Endogâmicos Lew
13.
Prog Brain Res ; 239: 179-227, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30314567

RESUMO

In this chapter, we develop a model of µ- and δ-opioid receptor (OR) effects on cellular activity in the corticostriatal circuit after reviewing clinical data on cognitive and mood impairments in opioid substance use disorder (OUD), we use this model to derive information on the relevance of opioid actions in this circuit for cognition and reward. We find that the cognitive impairments and rewarding properties of acute µ-OR activation can reasonably explained by pharmacological actions in the corticostriatal circuit. However, long-term cognitive impairments and mood dysfunction observed in OUD are probably induced by opiate abuse-related degenerative mechanisms.


Assuntos
Cognição/fisiologia , Disfunção Cognitiva/fisiopatologia , Lobo Frontal/fisiopatologia , Transtornos Relacionados ao Uso de Opioides/fisiopatologia , Recompensa , Analgésicos Opioides/farmacologia , Cognição/efeitos dos fármacos , Disfunção Cognitiva/psicologia , Lobo Frontal/efeitos dos fármacos , Humanos , Transtornos Relacionados ao Uso de Opioides/psicologia
14.
Front Pharmacol ; 9: 162, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29559911

RESUMO

Major depressive disorder (MDD) is associated with cognitive impairments that may contribute to poor functional outcomes. Clinical data suggests that the multimodal antidepressant vortioxetine attenuates some cognitive impairments in MDD patients, but the mechanistic basis for these improvements is unclear. One theory suggests that vortioxetine improves cognition by suppressing γ-amino butyric acid (GABA)ergic neurotransmission, thereby increasing glutamatergic activation. Vortioxetine's effects on cognition, GABA and glutamate neurotransmission have been supported in separate experiments, but no empirical work has directly connected vortioxetine's cognitive effects to those on GABA and glutamate neurotransmission. In this paper, we attempt to bridge this gap by evaluating vortioxetine's effects in the subchronic PCP (subPCP) model, which induces impaired cognitive function and altered GABA and glutamate neurotransmission. We demonstrate that acute or subchronic vortioxetine treatment attenuated subPCP-induced deficits in attentional set shifting (AST) performance, and that the selective 5-HT3 receptor antagonist ondansetron or the 5-HT reuptake inhibitor escitalopram could mimic this effect. Furthermore, acute vortioxetine treatment reversed subPCP-induced object recognition (OR) deficits in rats, while subchronic vortioxetine reversed subPCP-induced Object Recognition and object placement impairments in mice. Finally, subPCP treatment reduced GABAB receptor expression in a manner that was insensitive to vortioxetine treatment, and subchronic vortioxetine treatment alone, but not in combination with subPCP, significantly increased GABA's affinity for the GABAA receptor. These data suggest that vortioxetine reverses cognitive impairments in a model associated with altered GABA and glutamate neurotransmission, further supporting the hypothesis that vortioxetine's GABAergic and glutamatergic effects are relevant for cognitive function.

15.
Front Pharmacol ; 9: 1024, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271344

RESUMO

Attention impairment is a common feature of Major Depressive Disorder (MDD), and MDD-associated cognitive dysfunction may play an important role in determining functional status among this patient population. Vortioxetine is a multimodal antidepressant that may improve some aspects of cognitive function in MDD patients, and may indirectly increase glutamate neurotransmission in brain regions classically associated with attention function. Previous non-clinical research suggests that vortioxetine has limited effects on attention. This laboratory previously found that vortioxetine did not improve attention function in animals impaired by acute scopolamine administration, using the visual signal detection task (VSDT). However, vortioxetine has limited effects on acetylcholinergic neurotransmission, and thus it is possible that attention impaired by other mechanisms would be attenuated by vortioxetine. This study sought to investigate whether acute vortioxetine administration can attenuate VSDT impairments and hyperlocomotion induced by the non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist MK-801. We found that acute vortioxetine administration had no effect on VSDT performance on its own, but potentiated MK-801-induced VSDT impairments. Furthermore, vortioxetine had no effect on locomotor activity on its own, and did not alter MK-801-induced hyperlocomotion. We further investigated whether vortioxetine's effect on MK-801 could be driven by a kinetic interaction, but found that plasma and brain exposure for vortioxetine and MK-801 were similar whether administered alone or in combination. Thus, it appears that vortioxetine selectively potentiates MK-801-induced impairments in attention without altering its effects on locomotion, and further that this interaction must be pharmacodynamic in nature. A theoretical mechanism for this interaction is discussed.

16.
Neuropharmacology ; 128: 379-387, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29104073

RESUMO

The antidepressant vortioxetine exerts its effects via modulation of several serotonin (5-HT) receptors and inhibition of the 5-HT transporter (SERT). Additionally, vortioxetine has beneficial effects on aspects of cognitive dysfunction in depressed patients. However, a global examination of the drug effect on brain network connectivity is still missing. Here we compared the effects of vortioxetine and a serotonin norepinephrine reuptake inhibitor, duloxetine, on resting-state functional connectivity (RSFC) across the whole brain in awake rats using a combination of pharmacological and awake animal resting-state functional magnetic resonance imaging (rsfMRI) techniques. Our data showed that vortioxetine and duloxetine affected different inter-areal connections with limited overlap, indicating that in addition to different primary target profiles, these two antidepressants have distinct mechanisms of action at the systems level. Further, our data suggest that vortioxetine can affect specific brain areas with distinct 5-HT receptor expression profiles. Taken together, this study demonstrates that the awake animal fMRI approach provides a powerful tool to elucidate the effects of drugs on the brain with high spatial specificity and a global field of view. This capability is valuable to understand how different drugs affect the systems-level brain function, and provides important guidance to dissect specific brain regions and connections for further detailed mechanistic studies. This study also highlights the translational opportunity of the awake animal fMRI approach between preclinical results and human studies.


Assuntos
Antidepressivos/farmacologia , Encéfalo/efeitos dos fármacos , Cloridrato de Duloxetina/farmacologia , Piperazinas/farmacologia , Descanso , Sulfetos/farmacologia , Vigília/efeitos dos fármacos , Animais , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/efeitos dos fármacos , Oxigênio/sangue , Ratos , Ratos Long-Evans , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT1B de Serotonina , Vortioxetina
17.
Brain Res ; 1689: 1-11, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29274875

RESUMO

The multimodal antidepressant vortioxetine is thought to mediate its pharmacological effects via 5-HT1A receptor agonism, 5-HT1B receptor partial agonism, 5-HT1D, 5-HT3, 5-HT7 receptor antagonism and 5-HT transporter inhibition. Here we studied vortioxetine's functional effects across species (canine, mouse, rat, guinea pig and human) in cellular assays with heterologous expression of 5-HT3A receptors (in Xenopus oocytes and HEK-293 cells) and in mouse neuroblastoma N1E-115 cells with endogenous expression of 5-HT3A receptors. Furthermore, we studied the effects of vortioxetine on activity of CA1 Stratum Radiatum interneurons in rat hippocampus slices using current- and voltage-clamping methods. The patched neurons were subsequently filled with biocytin for confirmation of 5-HT3 receptor mRNA expression by in situ hybridization. Whereas, both vortioxetine and the 5-HT3 receptor antagonist ondansetron potently antagonized 5-HT-induced currents in the cellular assays, vortioxetine had a slower off-rate than ondansetron in oocytes expressing 5-HT3A receptors. Furthermore, vortioxetine's but not ondansetron's 5-HT3 receptor antagonistic potency varied considerably across species. Vortioxetine had the highest potency at rat and the lowest potency at guinea pig 5-HT3A receptors. Finally, in 5-HT3 receptor-expressing GABAergic interneurons from the CA1 stratum radiatum, vortioxetine and ondansetron blocked depolarizations induced by superfusion of either 5-HT or the 5-HT3 receptor agonist mCPBG. Taken together, these data add to a growing literature supporting the idea that vortioxetine may inhibit GABAergic neurotransmission in some brain regions via a 5-HT3 receptor antagonism-dependent mechanism and thereby disinhibit pyramidal neurons and enhance glutamatergic signaling.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Antidepressivos/farmacologia , Interneurônios/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Antagonistas do Receptor 5-HT3 de Serotonina/farmacologia , Vortioxetina/farmacologia , Potenciais de Ação/fisiologia , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Cães , Ácido Glutâmico/metabolismo , Cobaias , Células HEK293 , Humanos , Interneurônios/metabolismo , Camundongos , Ondansetron/farmacologia , Oócitos , Células Piramidais/metabolismo , Ratos , Receptores 5-HT3 de Serotonina/metabolismo , Serotonina/metabolismo , Técnicas de Cultura de Tecidos , Xenopus laevis , Ácido gama-Aminobutírico/metabolismo
18.
ACS Chem Neurosci ; 8(5): 1092-1100, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28272863

RESUMO

Selective serotonin (5-HT, SERT) reuptake inhibitors (SSRIs) are the most commonly prescribed treatments for depression. However, they have delayed efficacy and can induce side-effects that can encourage discontinuation. Recently, agents have been developed, including vortioxetine (Trintellix), that augment SERT blockade with interactions at other targets. At therapeutic doses, vortioxetine interacts with SERT as well as 5-HT1A, 5-HT1B, 5-HT3, and 5-HT7 receptors. We assessed the SERT-dependency of vortioxetine action using the SERT Met172 mouse model, which disrupts high-affinity interactions of many antidepressants with the transporter. We demonstrate that the SERT Met172 substitution induces an ∼19-fold loss in vortioxetine potency for SERT inhibition in midbrain synaptosomes. Moreover, in these mice, we observed reduced SERT occupancy, a diminished ability to prolong 5-HT clearance, and a reduced capacity to elevate extracellular 5-HT. Despite reduced interactions with SERT, vortioxetine maintained its ability to enhance mobility in tail suspension and forced swim tests, reduce consumption latency in the novelty induced hypophagia test, and promoted proliferation and survival of subgranular zone hippocampal stem cells. Our findings suggest that the antidepressant actions of vortioxetine may be SERT-independent, and encourage consideration of agents that mimic one or more actions of the drug in the development of improved depression treatments.


Assuntos
Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Piperazinas/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Serotonina/metabolismo , Sulfetos/farmacologia , Animais , Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Elevação dos Membros Posteriores , Hipocampo/metabolismo , Camundongos , Neurogênese/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Vortioxetina
19.
Neuropharmacology ; 121: 89-99, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28414050

RESUMO

Treatment-related sexual dysfunction is a common side effect of antidepressants and contributes to patient non-compliance or treatment cessation. However, the multimodal antidepressant, vortioxetine, demonstrates low sexual side effects in depressed patients. To investigate the mechanisms involved, sexual behavior was assessed in male and female rats after acute, and repeated (7 and 14 days) treatment with vortioxetine, flesinoxan (a 5-HT1A receptor agonist), CP-94253 (a 5-HT1B receptor agonist), or ondansetron (a 5-HT3 receptor antagonist). These selective ligands were chosen to simulate vortioxetine's direct modulation of these receptors. Paroxetine was also included in the male study. Acute and repeated treatment with vortioxetine at doses corresponding to clinical levels (based on serotonin transporter occupancy) had minimal effects on sexual behavior in male and female rats. High dose vortioxetine plus flesinoxan (to mimic predicted clinical levels of 5-HT1A receptor occupancy by vortioxetine) facilitated male rat sexual behavior (acutely) while inhibiting female rat proceptive behavior (both acutely and after 14 days treatment). The selective serotonin reuptake inhibitor, paroxetine, inhibited male sexual behavior after repeated administration (7 and 14 days). Flesinoxan alone facilitated male sexual behavior acutely while inhibiting female rat proceptive behavior after repeated administration (7 and 14 days). CP-94253 inhibited sexual behavior in both male and female rats after repeated administration. Ondansetron had no effect on sexual behavior. These findings underline the complex serotonergic regulation of sexual behavior and indicate that the low sexual side effects of vortioxetine found in clinical studies are likely associated with its direct modulation of serotonin receptors.


Assuntos
Piperazinas/farmacologia , Receptores de Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Caracteres Sexuais , Comportamento Sexual Animal/efeitos dos fármacos , Sulfetos/farmacologia , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Análise de Variância , Animais , Autorradiografia , Relação Dose-Resposta a Droga , Feminino , Masculino , Proteínas de Ligação a RNA/metabolismo , Ratos , Ratos Wistar , Tempo de Reação/efeitos dos fármacos , Agonistas do Receptor de Serotonina/farmacologia , Fatores de Tempo , Vortioxetina
20.
Front Pharmacol ; 8: 764, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29123483

RESUMO

Prefrontal-subcortical circuits support executive functions which often become dysfunctional in psychiatric disorders. Vortioxetine is a multimodal antidepressant that is currently used in the clinic to treat major depressive disorder. Mechanisms of action of vortioxetine include serotonin (5-HT) transporter blockade, 5-HT1A receptor agonism, 5-HT1B receptor partial agonism, and 5-HT1D, 5-HT3, and 5-HT7 receptor antagonism. Vortioxetine facilitates 5-HT transmission in the medial prefrontal cortex (mPFC), however, the impact of this compound on related prefrontal-subcortical circuits is less clear. Thus, the current study examined the impact of systemic vortioxetine administration (0.8 mg/kg, i.v.) on spontaneous spiking and spikes evoked by electrical stimulation of the mPFC in the anterior cingulate cortex (ACC), medial shell of the nucleus accumbens (msNAc), and lateral septal nucleus (LSN) in urethane-anesthetized rats. We also examined whether vortioxetine modulated afferent drive in the msNAc from hippocampal fimbria (HF) inputs. Similar studies were performed using the selective 5-HT reuptake inhibitor [selective serotonin reuptake inhibitors (SSRI)] escitalopram (1.6 mg/kg, i.v.) to enable comparisons between the multimodal actions of vortioxetine and SSRI-mediated effects. No significant differences in spontaneous activity were observed in the ACC, msNAc, and LSN across treatment groups. No significant impact of treatment on mPFC-evoked responses was observed in the ACC. In contrast, vortioxetine decreased mPFC-evoked activity recorded in the msNAc as compared to parallel studies in control and escitalopram treated groups. Thus, vortioxetine may reduce mPFC-msNAc afferent drive via a mechanism that, in addition to an SSRI-like effect, requires 5-HT receptor modulation. Recordings in the LSN revealed a significant increase in mPFC-evoked activity following escitalopram administration as compared to control and vortioxetine treated groups, indicating that complex modulation of 5-HT receptors by vortioxetine may offset SSRI-like effects in this region. Lastly, neurons in the msNAc were more responsive to stimulation of the HF following both vortioxetine and escitalopram administration, indicating that elevation of 5-HT tone and 5-HT receptor modulation may facilitate excitatory hippocampal synaptic drive in this region. The above findings point to complex 5-HT receptor-dependent effects of vortioxetine which may contribute to its unique impact on the function of prefrontal-subcortical circuits and the development of novel strategies for treating mood disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA