Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Chemistry ; 28(5): e202103559, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34807488

RESUMO

Detection and characterisation of very weak, non-covalent interactions in solution is inherently challenging. Low affinity, short complex lifetime and a constant battle against entropy brings even the most sensitive spectroscopic methods to their knees. Herein we introduce a strategy for the accurate experimental description of weak chemical forces in solution. Its scope is demonstrated by the detailed geometric and thermodynamic characterisation of the weak halogen bond of a non-fluorinated aryl iodide and an ether oxygen (0.6 kJ mol-1 ). Our approach makes use of the entropic advantage of studying a weak force intramolecularly, embedded into a cooperatively folding system, and of the combined use of NOE- and RDC-based ensemble analyses to accurately describe the orientation of the donor and acceptor sites. Thermodynamic constants (ΔG, ΔH and ΔS), describing the specific interaction, were derived from variable temperature chemical shift analysis. We present a methodology for the experimental investigation of remarkably weak halogen bonds and other related weak forces in solution, paving the way for their improved understanding and strategic use in chemistry and biology.


Assuntos
Halogênios , Físico-Química , Temperatura , Termodinâmica
2.
J Org Chem ; 86(8): 5778-5791, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33826339

RESUMO

The hydrated imidazoline ring expansion (HIRE-type) reaction was investigated for a series of di(hetero)arene-fused [1.4]thiazepinones in comparison with their sulfone counterparts. The sulfones were found to undergo ring expansion at a much higher rate compared to the thioethers, much in line with the current mechanistic understanding of the process. Moreover, the amide bond cis- and trans-isomers of the ring-expanded products were found, in the case of sulfones, to be stabilized through an intramolecular hydrogen bond. The latter phenomenon was studied in detail by NMR experiments and corroborated by X-ray crystallographic information.


Assuntos
Amidas , Enxofre , Ligação de Hidrogênio , Conformação Molecular , Oxirredução
3.
Chemistry ; 26(23): 5231-5244, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32027758

RESUMO

It has been hypothesised that drugs in the chemical space "beyond the rule of 5" (bRo5) must behave as molecular chameleons to combine otherwise conflicting properties, including aqueous solubility, cell permeability and target binding. Evidence for this has, however, been limited to the cyclic peptide cyclosporine A. Herein, we show that the non-peptidic and macrocyclic drugs roxithromycin, telithromycin and spiramycin behave as molecular chameleons, with rifampicin showing a less pronounced behaviour. In particular roxithromycin, telithromycin and spiramycin display a marked, yet limited flexibility and populate significantly less polar and more compact conformational ensembles in an apolar than in a polar environment. In addition to balancing of membrane permeability and aqueous solubility, this flexibility also allows binding to targets that vary in structure between species. The drugs' passive cell permeability correlates to their 3D polar surface area and corroborate two theoretical models for permeability, developed for cyclic peptides. We conclude that molecular chameleonicity should be incorporated in the design of orally administered drugs in the bRo5 space.


Assuntos
Lagartos/metabolismo , Peptídeos Cíclicos/química , Administração Oral , Animais , Permeabilidade da Membrana Celular , Conformação Molecular , Permeabilidade , Solubilidade
4.
Nat Rev Chem ; 8(1): 45-60, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38123688

RESUMO

Molecular chameleons possess a flexibility that allows them to dynamically shield or expose polar functionalities in response to the properties of the environment. Although the concept of molecular chameleons was introduced already in 1970, interest in them has grown considerably since the 2010s, when drug discovery has focused to an increased extent on new chemical modalities. Such modalities include cyclic peptides, macrocycles and proteolysis-targeting chimeras, all of which reside in a chemical space far from that of traditional small-molecule drugs. Both cell permeability and aqueous solubility are required for the oral absorption of drugs. Engineering these properties, and potent target binding, into the larger new modalities is a more daunting task than for traditional small-molecule drugs. The ability of chameleons to adapt to different environments may be essential for success. In this Review, we provide both general and theoretical insights into the realm of molecular chameleons. We discuss why chameleons have come into fashion and provide a do-it-yourself toolbox for their design; we then provide a glimpse of how advanced in silico methods can support molecular chameleon design.


Assuntos
Descoberta de Drogas , Peptídeos Cíclicos , Peptídeos Cíclicos/química , Permeabilidade , Solubilidade , Água
5.
Nat Rev Chem ; 7(7): 511-524, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37169885

RESUMO

Nuclear magnetic resonance (NMR) is the spectroscopic technique of choice for determining molecular conformations in solution at atomic resolution. As solution NMR spectra are rich in structural and dynamic information, the way in which the data should be acquired and handled to deliver accurate ensembles is not trivial. This Review provides a guide to the NMR experiment selection and parametrization process, the generation of viable theoretical conformer pools and the deconvolution of time-averaged NMR data into a conformer ensemble that accurately represents a flexible molecule in solution. In addition to reviewing the key elements of solution ensemble determination of flexible mid-sized molecules, the feasibility and pitfalls of data deconvolution are discussed with a comparison of the performance of representative algorithms.


Assuntos
Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos , Conformação Molecular
6.
RSC Adv ; 11(7): 4200-4208, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35424346

RESUMO

Understanding the conformational preferences of free ligands in solution is often necessary to rationalize structure-activity relationships in drug discovery. Herein, we examine the conformational behavior of an epimeric pair of side-chain stapled peptides that inhibit the FAD dependent amine oxidase lysine specific demethylase 1 (LSD1). The peptides differ only at a single stereocenter, but display a major difference in binding affinity. Their Raman optical activity (ROA) spectra are most likely dominated by the C-terminus, obscuring the analysis of the epimeric macrocycle. By employing NMR spectroscopy, we show a difference in conformational behavior between the two compounds and that the LSD1 bound conformation of the most potent compound is present to a measurable extent in aqueous solution. In addition, we illustrate that Molecular Dynamics (MD) simulations produce ensembles that include the most important solution conformations, but that it remains problematic to identify relevant conformations with no a priori knowledge from the large conformational pool. Furthermore, this work highlights the importance of understanding the scope and limitations of the available techniques for conducting conformational analyses. It also emphasizes the importance of conformational selection of a flexible ligand in molecular recognition.

7.
ACS Omega ; 5(8): 3979-3995, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32149225

RESUMO

Lysine-specific demethylase 1 (LSD1) is an epigenetic enzyme which regulates the methylation of Lys4 of histone 3 (H3) and is overexpressed in certain cancers. We used structures of H3 substrate analogues bound to LSD1 to design macrocyclic peptide inhibitors of LSD1. A linear, Lys4 to Met-substituted, 11-mer (4) was identified as the shortest peptide distinctly interacting with LSD1. It was evolved into macrocycle 31, which was >40 fold more potent (K i = 2.3 µM) than 4. Linear and macrocyclic peptides exhibited unexpected differences in structure-activity relationships for interactions with LSD1, indicating that they bind LSD1 differently. This was confirmed by the crystal structure of 31 in complex with LSD1-CoREST1, which revealed a novel binding mode at the outer rim of the LSD1 active site and without a direct interaction with FAD. NMR spectroscopy of 31 suggests that macrocyclization restricts its solution ensemble to conformations that include the one in the crystalline complex. Our results provide a solid basis for the design of optimized reversible LSD1 inhibitors.

8.
ACS Omega ; 3(9): 11742-11757, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-30320271

RESUMO

Conformational flexibility is a major determinant of the properties of macrocycles and other drugs in beyond rule of 5 (bRo5) space. Prediction of conformations is essential for design of drugs in this space, and we have evaluated three tools for conformational sampling of a set of 10 bRo5 drugs and clinical candidates in polar and apolar environments. The distance-geometry based OMEGA was found to yield ensembles spanning larger structure and property spaces than the ensembles obtained by MOE-LowModeMD (MOE) and MacroModel (MC). Both MC and OMEGA but not MOE generated different ensembles for polar and apolar environments. All three conformational search methods generated conformers similar to the crystal structure conformers for 9 of the 10 compounds, with OMEGA performing somewhat better than MOE and MC. MOE and OMEGA found all six conformers of roxithromycin that were identified by NMR in aqueous solutions, whereas only OMEGA sampled the three conformers observed in chloroform. We suggest that characterization of conformers using molecular descriptors, e.g., the radius of gyration and polar surface area, is preferred to energy- or root-mean-square deviation-based methods for selection of biologically relevant conformers in drug discovery in bRo5 space.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA