Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892192

RESUMO

Cardiac fibrosis, a process characterized by excessive extracellular matrix (ECM) deposition, is a common pathological consequence of many cardiovascular diseases (CVDs) normally resulting in organ failure and death. Cardiac fibroblasts (CFs) play an essential role in deleterious cardiac remodeling and dysfunction. In response to injury, quiescent CFs become activated and adopt a collagen-secreting phenotype highly contributing to cardiac fibrosis. In recent years, studies have been focused on the exploration of molecular and cellular mechanisms implicated in the activation process of CFs, which allow the development of novel therapeutic approaches for the treatment of cardiac fibrosis. Transcriptomic analyses using single-cell RNA sequencing (RNA-seq) have helped to elucidate the high cellular diversity and complex intercellular communication networks that CFs establish in the mammalian heart. Furthermore, a significant body of work supports the critical role of epigenetic regulation on the expression of genes involved in the pathogenesis of cardiac fibrosis. The study of epigenetic mechanisms, including DNA methylation, histone modification, and chromatin remodeling, has provided more insights into CF activation and fibrotic processes. Targeting epigenetic regulators, especially DNA methyltransferases (DNMT), histone acetylases (HAT), or histone deacetylases (HDAC), has emerged as a promising approach for the development of novel anti-fibrotic therapies. This review focuses on recent transcriptomic advances regarding CF diversity and molecular and epigenetic mechanisms that modulate the activation process of CFs and their possible clinical applications for the treatment of cardiac fibrosis.


Assuntos
Epigênese Genética , Fibroblastos , Fibrose , Humanos , Animais , Fibroblastos/metabolismo , Fibroblastos/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Metilação de DNA
2.
Biotechnol Bioeng ; 120(9): 2725-2741, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36919232

RESUMO

Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) act as signaling mediators of cellular responses. However, despite representing a promising alternative to cell-based therapies, clinical translation of EVs is currently limited by their lack of scalability and standardized bioprocessing. Herein, we integrated scalable downstream processing protocols with standardized expansion of large numbers of viable cells in stirred-tank bioreactors to improve EV production. Higher EV yields were linked to EV isolation by tangential flow filtration followed by size exclusion chromatography, rendering 5 times higher number of EVs comparatively to density gradient ultracentrifugation protocols. Additionally, when compared to static culture, EV manufacture in bioreactors resulted in 2.2 higher yields. Highlighting the role of operating under optimal cell culture conditions to maximize the number of EVs secreted per cell, MSCs cultured at lower glucose concentration favored EV secretion. While offline measurements of metabolites concentration can be performed, in this work, Raman spectroscopy was also applied to continuously track glucose levels in stirred-tank bioreactors, contributing to streamline the selection of optimal EV collection timepoints. Importantly, MSC-derived EVs retained their quality attributes and were able to stimulate angiogenesis in vitro, therefore highlighting their promising therapeutic potential.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Técnicas de Cultura de Células , Reatores Biológicos , Vesículas Extracelulares/metabolismo , Glucose/metabolismo
3.
Int J Mol Sci ; 24(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37373273

RESUMO

The deposition of stem cells at sites of injury is a clinically relevant approach to facilitate tissue repair and angiogenesis. However, insufficient cell engraftment and survival require the engineering of novel scaffolds. Here, a regular network of microscopic poly(lactic-co-glycolic acid) (PLGA) filaments was investigated as a promising biodegradable scaffold for human Adipose-Derived Stem Cell (hADSC) tissue integration. Via soft lithography, three different microstructured fabrics were realized where 5 × 5 and 5 × 3 µm PLGA 'warp' and 'weft' filaments crossed perpendicularly with pitch distances of 5, 10 and 20 µm. After hADSC seeding, cell viability, actin cytoskeleton, spatial organization and the secretome were characterized and compared to conventional substrates, including collagen layers. On the PLGA fabric, hADSC re-assembled to form spheroidal-like structures, preserving cell viability and favoring a nonlinear actin organization. Moreover, the secretion of specific factors involved in angiogenesis, the remodeling of the extracellular matrix and stem cell homing was favored on the PLGA fabric as compared to that which occurred on conventional substrates. The paracrine activity of hADSC was microstructure-dependent, with 5 µm PLGA fabric enhancing the expression of factors involved in all three processes. Although more studies are needed, the proposed PLGA fabric would represent a promising alternative to conventional collagen substrates for stem cell implantation and angiogenesis induction.


Assuntos
Ácido Poliglicólico , Alicerces Teciduais , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Alicerces Teciduais/química , Ácido Poliglicólico/química , Ácido Láctico/química , Engenharia Tecidual , Células Cultivadas , Colágeno/química , Células-Tronco/ultraestrutura
4.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077316

RESUMO

Impaired wound healing in patients with type 2 diabetes (DM2) is characterized by chronic inflammation, which delays wound closure. Specialized pro-resolving lipid mediators (SPMs) are bioactive molecules produced from essential polyunsaturated fatty acids (PUFAs), principally omega-3 docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). SPMs are potent regulators of inflammation and have been used to suppress chronic inflammation in peripheral artery disease, non-alcoholic fatty liver disease, and central nervous system syndromes. LIPINOVA® is a commercially available safe-grade nutritional supplement made from a fractionated marine lipid concentrate derived from anchovy and sardine oil that is rich in SPMs and EPA, as well as DHA precursors. Here, we assessed the effect of LIPINOVA® in wound dressing applications. LIPINOVA® showed biocompatibility with keratinocytes and fibroblasts, reduced the abundance of pro-inflammatory macrophages (Mφ1), and promoted in vitro wound closure. Daily application of the marine oil to open wounds made by punch biopsy in db/db mice promoted wound closure by accelerating the resolution of inflammation, inducing neoangiogenesis and Mφ1/Mφ2 macrophage polarization. In conclusion, LIPINOVA® displays pro-resolutive properties and could be exploited as a therapeutic agent for the treatment of diabetic ulcers.


Assuntos
Diabetes Mellitus Tipo 2 , Ácidos Graxos Ômega-3 , Administração Tópica , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ácido Eicosapentaenoico/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Inflamação/tratamento farmacológico , Macrófagos , Camundongos , Cicatrização
5.
Circulation ; 142(19): 1831-1847, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-32972203

RESUMO

BACKGROUND: Cardiac fibroblasts (CFs) have a central role in the ventricular remodeling process associated with different types of fibrosis. Recent studies have shown that fibroblasts do not respond homogeneously to heart injury. Because of the limited set of bona fide fibroblast markers, a proper characterization of fibroblast population heterogeneity in response to cardiac damage is lacking. The purpose of this study was to define CF heterogeneity during ventricular remodeling and the underlying mechanisms that regulate CF function. METHODS: Collagen1α1-GFP (green fluorescent protein)-positive CFs were characterized after myocardial infarction (MI) by single-cell and bulk RNA sequencing, assay for transposase-accessible chromatin sequencing, and functional assays. Swine and patient samples were studied using bulk RNA sequencing. RESULTS: We identified and characterized a unique CF subpopulation that emerges after MI in mice. These activated fibroblasts exhibit a clear profibrotic signature, express high levels of Cthrc1 (collagen triple helix repeat containing 1), and localize into the scar. Noncanonical transforming growth factor-ß signaling and different transcription factors including SOX9 are important regulators mediating their response to cardiac injury. Absence of CTHRC1 results in pronounced lethality attributable to ventricular rupture. A population of CFs with a similar transcriptome was identified in a swine model of MI and in heart tissue from patients with MI and dilated cardiomyopathy. CONCLUSIONS: We report CF heterogeneity and their dynamics during the course of MI and redefine the CFs that respond to cardiac injury and participate in myocardial remodeling. Our study identifies CTHRC1 as a novel regulator of the healing scar process and a target for future translational studies.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , RNA-Seq , Análise de Célula Única , Animais , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/genética , Fibroblastos/patologia , Humanos , Camundongos , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Miocárdio/patologia
6.
J Pharmacol Exp Ther ; 370(3): 761-771, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30728248

RESUMO

Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) are a promising cell source for cardiac repair after myocardial infarction (MI) because they offer several advantages such as potential to remuscularize infarcted tissue, integration in the host myocardium, and paracrine therapeutic effects. However, cell delivery issues have limited their potential application in clinical practice, showing poor survival and engraftment after transplantation. In this work, we hypothesized that the combination of hiPSC-CMs with microparticles (MPs) could enhance long-term cell survival and retention in the heart and consequently improve cardiac repair. CMs were obtained by differentiation of hiPSCs by small-molecule manipulation of the Wnt pathway and adhered to biomimetic poly(lactic-co-glycolic acid) MPs covered with collagen and poly(d-lysine). The potential of the system to support cell survival was analyzed in vitro, demonstrating a 1.70-fold and 1.99-fold increase in cell survival after 1 and 4 days, respectively. The efficacy of the system was tested in a mouse MI model. Interestingly, 2 months after administration, transplanted hiPSC-CMs could be detected in the peri-infarct area. These cells not only maintained the cardiac phenotype but also showed in vivo maturation and signs of electrical coupling. Importantly, cardiac function was significantly improved, which could be attributed to a paracrine effect of cells. These findings suggest that MPs represent an excellent platform for cell delivery in the field of cardiac repair, which could also be translated into an enhancement of the potential of cell-based therapies in other medical applications.


Assuntos
Plásticos Biodegradáveis/uso terapêutico , Cardiopatias/terapia , Células-Tronco Pluripotentes Induzidas/transplante , Miócitos Cardíacos/transplante , Nanopartículas/uso terapêutico , Transplante de Células-Tronco/métodos , Animais , Diferenciação Celular , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Cardiopatias/patologia , Testes de Função Cardíaca , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Infarto do Miocárdio/terapia , Remodelação Ventricular
7.
Arterioscler Thromb Vasc Biol ; 38(9): 2160-2173, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29930004

RESUMO

Objective- Cardiac progenitor cells reside in the heart in adulthood, although their physiological relevance remains unknown. Here, we demonstrate that after myocardial infarction, adult Bmi1+ (B lymphoma Mo-MLV insertion region 1 homolog [PCGF4]) cardiac cells are a key progenitor-like population in cardiac neovascularization during ventricular remodeling. Approach and Results- These cells, which have a strong in vivo differentiation bias, are a mixture of endothelial- and mesenchymal-related cells with in vitro spontaneous endothelial cell differentiation capacity. Genetic lineage tracing analysis showed that heart-resident Bmi1+ progenitor cells proliferate after acute myocardial infarction and differentiate to generate de novo cardiac vasculature. In a mouse model of induced myocardial infarction, genetic ablation of these cells substantially deteriorated both heart angiogenesis and the ejection fraction, resulting in an ischemic-dilated cardiac phenotype. Conclusions- These findings imply that endothelial-related Bmi1+ progenitor cells are necessary for injury-induced neovascularization in adult mouse heart and highlight these cells as a suitable therapeutic target for preventing dysfunctional left ventricular remodeling after injury.


Assuntos
Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologia , Neovascularização Patológica , Complexo Repressor Polycomb 1/fisiologia , Células-Tronco/patologia , Células-Tronco/fisiologia , Remodelação Ventricular , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-kit/metabolismo , Fatores de Transcrição/metabolismo
8.
Int J Mol Sci ; 19(10)2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30347686

RESUMO

Coronary heart disease is the leading cause of death worldwide with huge socio-economic consequences. Cell therapy, and particularly mesenchymal stem cells (MSC), are considered a promising option to treat this disorder, due to their robust trophic and immunomodulatory properties. However, limitations such as their low rate of engraftment and poor survival after administration into the heart have precluded their large-scale clinical use. Nevertheless, the combination of MSC with polymer-made scaffolds or hydrogels has proven to enhance their retention and, therefore, their efficacy. Additionally, their allogeneic use could permit the creation of ready-to-use cell patches able to improve their feasibility and promote their application in clinical settings. In this review, the experimental and clinical results derived from the use of MSC in cardiac pathology, as well as advances in the bioengineering field to improve the potential of therapeutic cells, are extensively discussed. Additionally, the current understanding of the heart response to the allogeneic MSC transplants is addressed.


Assuntos
Materiais Biocompatíveis/química , Regeneração Tecidual Guiada/métodos , Cardiopatias/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Alicerces Teciduais/química , Animais , Humanos , Transplante Homólogo
9.
J Transl Med ; 15(1): 56, 2017 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-28288654

RESUMO

BACKGROUND: The safety and efficacy of cardiac stem/progenitor cells (CSC) have been demonstrated in previous preclinical and clinical assays for heart failure. However, their optimal delivery route to the ischemic heart has not yet been assessed. This study was designed to determine by a non-invasive imaging technique (PET/CT) the biodistribution and acute retention of allogeneic pig CSC implanted by two different delivery routes, intracoronary (IC) and intramyocardial (IM), in a swine preclinical model of chronic ischemia-reperfusion. METHODS: Ischemia-reperfusion was induced in six Goettingen hybrid minipigs by 90 min coronary artery occlusion followed by reperfusion. Thirty days later, animals were allocated to receive IC (n = 3) or NOGA®-guided IM injection (n = 3) of 50 million of 18F-FDG/GFP-labeled allogeneic pig CSC. Acute retention was quantified by PET/CT 4 h after injection and cell engraftment assessed by immunohistochemical quantification of GFP+ cells three days post-injection. RESULTS: Biodistribution of 18F-FDG-labeled CSC was clearly visualized by PET/CT imaging and quantified. No statistical differences in acute cell retention (percentage of injected dose, %ID) were found in the heart when cells were administered by NOGA®-guided IM (13.4 ± 3.4%ID) or IC injections (17.4 ± 4.1%ID). Interestingly, engrafted CSC were histologically detected only after IM injection. CONCLUSION: PET/CT imaging of 18F-FDG-labeled CSC allows quantifying biodistribution and acute retention of implanted cells in a clinically relevant pig model of chronic myocardial infarction. Similar levels of acute retention are achieved when cells are IM or IC administered. However, acute cell retention does not correlate with cell engraftment, which is improved by IM injection.


Assuntos
Diagnóstico por Imagem/métodos , Injeções , Traumatismo por Reperfusão Miocárdica/terapia , Miocárdio/patologia , Transplante de Células-Tronco , Células-Tronco/citologia , Animais , Separação Celular , Modelos Animais de Doenças , Feminino , Fluordesoxiglucose F18/química , Glucosamina/análogos & derivados , Glucosamina/química , Traumatismo por Reperfusão Miocárdica/diagnóstico por imagem , Traumatismo por Reperfusão Miocárdica/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Sus scrofa , Distribuição Tecidual
10.
J Mol Cell Cardiol ; 62: 43-50, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23643470

RESUMO

The possibility to induce pluripotency in somatic cells or, even further, to induce cell transdifferentiation through the forced expression of reprogramming factors has offered new, attractive options for cardiovascular regenerative medicine. In fact, recent discoveries have demonstrated that induced pluripotent stem (iPS) cells can be differentiated into cardiomyocytes, suggesting that iPS cells have the potential to significantly advance future cardiac regenerative therapies. Herein, we provide an overview of the characteristics and differentiation potential associated with iPS cells. In addition, we discuss current methods for inducing their specification towards a cardiovascular phenotype as well as in vivo evidence supporting the therapeutic benefit of iPS-derived cardiac cells. Finally, we describe recent findings regarding the use of iPS-derived cells for modeling several genetic cardiac disorders, which have indicated that these pluripotent cells represent an ideal tool for drug testing and might contribute to the development of future personalized regenerative cell therapies.


Assuntos
Coração/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Regeneração/fisiologia , Animais , Diferenciação Celular/fisiologia , Terapia Baseada em Transplante de Células e Tecidos , Humanos
11.
J Exp Med ; 204(1): 129-39, 2007 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-17227908

RESUMO

For decades, in vitro expansion of transplantable hematopoietic stem cells (HSCs) has been an elusive goal. Here, we demonstrate that multipotent adult progenitor cells (MAPCs), isolated from green fluorescent protein (GFP)-transgenic mice and expanded in vitro for >40-80 population doublings, are capable of multilineage hematopoietic engraftment of immunodeficient mice. Among MAPC-derived GFP+CD45.2+ cells in the bone marrow of engrafted mice, HSCs were present that could radioprotect and reconstitute multilineage hematopoiesis in secondary and tertiary recipients, as well as myeloid and lymphoid hematopoietic progenitor subsets and functional GFP+ MAPC-derived lymphocytes that were functional. Although hematopoietic contribution by MAPCs was comparable to control KTLS HSCs, approximately 10(3)-fold more MAPCs were required for efficient engraftment. Because GFP+ host-derived CD45.1+ cells were not observed, fusion is not likely to account for the generation of HSCs by MAPCs.


Assuntos
Hematopoese , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Multipotentes/transplante , Animais , Linfócitos B/imunologia , Sobrevivência de Enxerto , Proteínas de Fluorescência Verde/genética , Hematopoese/imunologia , Sistema Hematopoético/citologia , Técnicas In Vitro , Tecido Linfoide/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Células-Tronco Multipotentes/imunologia , Especificidade de Órgãos , Proteínas Recombinantes/genética , Linfócitos T/imunologia
12.
Nanoscale Adv ; 5(24): 6830-6836, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38059035

RESUMO

In the development of therapeutic extracellular vesicles (EVs), drug encapsulation efficiencies are significantly lower when compared with synthetic nanomedicines. This is due to the hierarchical structure of the EV membrane and the physicochemical properties of the candidate drug (molecular weight, hydrophilicity, lipophilicity, and so on). As a proof of concept, here we demonstrated the importance of drug compartmentalization in EVs as an additional parameter affecting the therapeutic potential of drug-loaded EVs. In human adipose mesenchymal stem cell (hADSC) derived EVs, we performed a comparative drug loading analysis using two formulations of the same chemotherapeutic molecule - free doxorubicin (DOX) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) lipid-conjugated doxorubicin (L-DOX) - to enhance the intracellular uptake and therapeutic efficacy. By nano surface energy transfer (NSET) and molecular simulation techniques, along with cryo-TEM analysis, we confirmed the differential compartmentalization of these two molecules in hADSC EVs. L-DOX was preferentially adsorbed onto the surface of the EV, due to its higher lipophilicity, whereas free DOX was mostly encapsulated within the EV core. Also, the L-DOX loaded EV (LDOX@EV) returned an almost three-fold higher DOX content as compared to the free DOX loaded EV (DOX@EV), for a given input mass of drug. Based on the cellular investigations, L-DOX@EV showed higher cell internalization than DOX@EV. Also, in comparison with free L-DOX, the magnitude of therapeutic potential enhancement displayed by the surface compartmentalized L-DOX@EV is highly promising and can be exploited to overcome the sensitivity of many potential drugs, which are impermeable in nature. Overall, this study illustrates the significance of drug compartmentalization in EVs and how this could affect intracellular delivery, loading efficiency, and therapeutic effect. This will further lay the foundation for the future systematic investigation of EV-based biotherapeutic delivery platforms for personalized medicine.

13.
Eur J Pharm Biopharm ; 184: 83-91, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36693545

RESUMO

Nanomedicine offers great potential for the treatment of cardiovascular disease and particulate systems have the capacity to markedly improve bioavailability of therapeutics. The delivery of pro-angiogenic hepatocyte growth factor (HGF) and pro-survival and pro-myogenic insulin-like growth factor (IGF-1) encapsulated in Alginate-Sulfate nanoparticles (AlgS-NP) might improve left ventricular (LV) functional recovery after myocardial infarction (MI). In a porcine ischemia-reperfusion model, MI is induced by 75 min balloon occlusion of the mid-left anterior descending coronary artery followed by reperfusion. After 1 week, pigs (n = 12) with marked LV-dysfunction (LV ejection fraction, LVEF < 45%) are randomized to fusion imaging-guided intramyocardial injections of 8 mg AlgS-NP prepared with 200 µg HGF and IGF-1 (HGF/IGF1-NP) or PBS (Control). Intramyocardial injection is safe and pharmacokinetic studies of Cy5-labeled NP confirm superior cardiac retention compared to intracoronary infusion. Seven weeks after intramyocardial-injection of HGF/IGF1-NP, infarct size, measured using magnetic resonance imaging, is significantly smaller than in controls and is associated with increased coronary flow reserve. Importantly, HGF/IGF1-NP-treated pigs show significantly increased LVEF accompanied by improved myocardial remodeling. These findings demonstrate the feasibility and efficacy of using AlgS-NP as a delivery system for growth factors and offer the prospect of innovative treatment for refractory ischemic cardiomyopathy.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Nanopartículas , Animais , Modelos Animais de Doenças , Fator de Crescimento de Hepatócito , Fator de Crescimento Insulin-Like I , Sulfatos , Suínos
14.
Artigo em Inglês | MEDLINE | ID: mdl-37566441

RESUMO

Ischemic heart disease is one of the leading causes of death worldwide. The efficient delivery of therapeutic growth factors could counteract the adverse prognosis of post-myocardial infarction (post-MI). In this study, a collagen hydrogel that is able to load and appropriately deliver pro-angiogenic stromal cell-derived factor 1 (SDF1) was physically coupled with a compact collagen membrane in order to provide the suture strength required for surgical implantation. This bilayer collagen-on-collagen scaffold (bCS) showed the suitable physicochemical properties that are needed for efficient implantation, and the scaffold was able to deliver therapeutic growth factors after MI. In vitro collagen matrix biodegradation led to a sustained SDF1 release and a lack of cytotoxicity in the relevant cell cultures. In vivo intervention in a rat subacute MI model resulted in the full integration of the scaffold into the heart after implantation and biocompatibility with the tissue, with a prevalence of anti-inflammatory and pro-angiogenic macrophages, as well as evidence of revascularization and improved cardiac function after 60 days. Moreover, the beneficial effect of the released SDF1 on heart remodeling was confirmed by a significant reduction in cardiac tissue stiffness. Our findings demonstrate that this multimodal scaffold is a desirable matrix that can be used as a drug delivery system and a scaffolding material to promote functional recovery after MI.

15.
Dev Cell ; 58(24): 2881-2895.e7, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37967560

RESUMO

Generating organs from stem cells through blastocyst complementation is a promising approach to meet the clinical need for transplants. In order to generate rejection-free organs, complementation of both parenchymal and vascular cells must be achieved, as endothelial cells play a key role in graft rejection. Here, we used a lineage-specific cell ablation system to produce mouse embryos unable to form both the cardiac and vascular systems. By mouse intraspecies blastocyst complementation, we rescued heart and vascular system development separately and in combination, obtaining complemented hearts with cardiomyocytes and endothelial cells of exogenous origin. Complemented chimeras were viable and reached adult stage, showing normal cardiac function and no signs of histopathological defects in the heart. Furthermore, we implemented the cell ablation system for rat-to-mouse blastocyst complementation, obtaining xenogeneic hearts whose cardiomyocytes were completely of rat origin. These results represent an advance in the experimentation towards the in vivo generation of transplantable organs.


Assuntos
Sistema Cardiovascular , Coração , Células-Tronco Pluripotentes , Animais , Camundongos , Ratos , Blastocisto , Células Endoteliais , Miócitos Cardíacos , Coração/embriologia , Sistema Cardiovascular/embriologia
16.
Cells ; 12(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37759522

RESUMO

Oxidative stress-induced myocardial apoptosis and necrosis are critically involved in ischemic infarction, and several sources of extracellular vesicles appear to be enriched in therapeutic activities. The central objective was to identify and validate the differential exosome miRNA repertoire in human cardiac progenitor cells (CPC). CPC exosomes were first analyzed by LC-MS/MS and compared by RNAseq with exomes of human mesenchymal stromal cells and human fibroblasts to define their differential exosome miRNA repertoire (exo-miRSEL). Proteomics demonstrated a highly significant representation of cardiovascular development functions and angiogenesis in CPC exosomes, and RNAseq analysis yielded about 350 different miRNAs; among the exo-miRSEL population, miR-935 was confirmed as the miRNA most significantly up-regulated; interestingly, miR-935 was also found to be preferentially expressed in mouse primary cardiac Bmi1+high CPC, a population highly enriched in progenitors. Furthermore, it was found that transfection of an miR-935 antagomiR combined with oxidative stress treatment provoked a significant increment both in apoptotic and necrotic populations, whereas transfection of a miR-935 mimic did not modify the response. Conclusion. miR-935 is a highly differentially expressed miRNA in exo-miRSEL, and its expression reduction promotes oxidative stress-associated apoptosis. MiR-935, together with other exosomal miRNA members, could counteract oxidative stress-related apoptosis, at least in CPC surroundings.

17.
Biomedicines ; 10(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36289614

RESUMO

Several Cre recombinase transgenic mouse models have been generated for cardiac fibroblast (CF) tracking and heart regulation. However, there is still no consensus on the ideal mouse model to optimally identify and/or regulate these cells. Here, a comparative evaluation of the efficiency and specificity of the indirect reporter Cre-loxP system was carried out in three of the most commonly used fibroblast reporter transgenic mice (Pdgfra-CreERT2, Col1a1-CreERT2 and PostnMCM) under healthy and ischemic conditions, to determine their suitability in in vivo studies of cardiac fibrosis. We demonstrate optimal Cre recombinase activity in CF (but also, although moderate, in endothelial cells (ECs)) derived from healthy and infarcted hearts in the PDGFRa-creERT2 mouse strain. In contrast, no positive reporter signal was found in CF derived from the Col1a1-CreERT2 mice. Finally, in the PostnMCM line, fluorescent reporter expression was specifically detected in activated CF but not in EC, which leads us to conclude that it may be the most reliable model for future studies on cardiovascular disease. Importantly, no lethality or cardiac fibrosis were induced after tamoxifen administration at the established doses, either in healthy or infarcted mice of the three fibroblast reporter lineages. This study lays the groundwork for future efficient in vivo CF tracking and functional analyses.

18.
J Clin Invest ; 118(2): 505-14, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18172550

RESUMO

Despite progress in cardiovascular research, a cure for peripheral vascular disease has not been found. We compared the vascularization and tissue regeneration potential of murine and human undifferentiated multipotent adult progenitor cells (mMAPC-U and hMAPC-U), murine MAPC-derived vascular progenitors (mMAPC-VP), and unselected murine BM cells (mBMCs) in mice with moderate limb ischemia, reminiscent of intermittent claudication in human patients. mMAPC-U durably restored blood flow and muscle function and stimulated muscle regeneration, by direct and trophic contribution to vascular and skeletal muscle growth. This was in contrast to mBMCs and mMAPC-VP, which did not affect muscle regeneration and provided only limited and transient improvement. Moreover, mBMCs participated in a sustained inflammatory response in the lower limb, associated with progressive deterioration in muscle function. Importantly, mMAPC-U and hMAPC-U also remedied vascular and muscular deficiency in severe limb ischemia, representative of critical limb ischemia in humans. Thus, unlike BMCs or vascular-committed progenitors, undifferentiated multipotent adult progenitor cells offer the potential to durably repair ischemic damage in peripheral vascular disease patients.


Assuntos
Extremidades/irrigação sanguínea , Isquemia/terapia , Células-Tronco Multipotentes/transplante , Animais , Vasos Sanguíneos/citologia , Transplante de Medula Óssea , Diferenciação Celular , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Multipotentes/citologia , Células Musculares/citologia
19.
Eur Heart J ; 31(8): 1013-21, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19700775

RESUMO

AIMS: Although transplantation of skeletal myoblast (SkM) in models of chronic myocardial infarction (MI) induces an improvement in cardiac function, the limited engraftment remains a major limitation. We analyse in a pre-clinical model whether the sequential transplantation of autologous SkM by percutaneous delivery was associated with increased cell engraftment and functional benefit. METHODS AND RESULTS: Chronically infarcted Goettingen minipigs (n = 20) were divided in four groups that received either media control or one, two, or three doses of SkM (mean of 329.6 x 10(6) cells per dose) at intervals of 6 weeks and were followed for a total of 7 months. At the time of sacrifice, cardiac function was significantly better in animals treated with SkM in comparison with the control group. A significantly greater increase in the DeltaLVEF was detected in animals that received three doses vs. a single dose of SkM. A correlation between the total number of transplanted cells and the improvement in LVEF and DeltaLVEF was found (P < 0.05). Skeletal myoblast transplant was associated with an increase in tissue vasculogenesis and decreased fibrosis (collagen vascular fraction) and these effects were greater in animals receiving three doses of cells. CONCLUSION: Repeated injection of SkM in a model of chronic MI is feasible and safe and induces a significant improvement in cardiac function.


Assuntos
Mioblastos Esqueléticos/transplante , Infarto do Miocárdio/terapia , Animais , Arritmias Cardíacas/etiologia , Diferenciação Celular , Doença Crônica , Fibrose , Sobrevivência de Enxerto , Imuno-Histoquímica , Mioblastos Esqueléticos/citologia , Miocárdio/patologia , Neovascularização Fisiológica/fisiologia , Suínos , Porco Miniatura , Disfunção Ventricular Esquerda/etiologia , Remodelação Ventricular/fisiologia
20.
Pharmaceutics ; 13(8)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34452230

RESUMO

The use of allogeneic adipose-derived mesenchymal stromal cells (alloADSCs) represents an attractive approach for treating myocardial infarction (MI). Furthermore, adding a natural support improves alloADSCs engraftment and survival in heart tissues, leading to a greater therapeutic effect. We aimed to examine the safety and immunological reaction induced by epicardial implantation of a clinical-grade collagen scaffold (CS) seeded with alloADSCs for its future application in humans. Thus, cellularized scaffolds were myocardially or subcutaneously implanted in immunosuppressed rodent models. The toxicological parameters were not significantly altered, and tumor formation was not found over the short or long term. Furthermore, biodistribution analyses in the infarcted immunocompetent rats displayed cell engraftment in the myocardium but no migration to other organs. The immunogenicity of alloADSC-CS was also evaluated in a preclinical porcine model of chronic MI; no significant humoral or cellular alloreactive responses were found. Moreover, CS cellularized with human ADSCs cocultured with human allogeneic immune cells produced no alloreactive response. Interestingly, alloADSC-CS significantly inhibited lymphocyte responses, confirming its immunomodulatory action. Thus, alloADSC-CS is likely safe and does not elicit any alloreactive immunological response in the host. Moreover, it exerts an immunomodulatory action, which supports its translation to a clinical setting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA