Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(10): e2314083121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38427599

RESUMO

In a stack of atomically thin van der Waals layers, introducing interlayer twist creates a moiré superlattice whose period is a function of twist angle. Changes in that twist angle of even hundredths of a degree can dramatically transform the system's electronic properties. Setting a precise and uniform twist angle for a stack remains difficult; hence, determining that twist angle and mapping its spatial variation is very important. Techniques have emerged to do this by imaging the moiré, but most of these require sophisticated infrastructure, time-consuming sample preparation beyond stack synthesis, or both. In this work, we show that torsional force microscopy (TFM), a scanning probe technique sensitive to dynamic friction, can reveal surface and shallow subsurface structure of van der Waals stacks on multiple length scales: the moirés formed between bi-layers of graphene and between graphene and hexagonal boron nitride (hBN) and also the atomic crystal lattices of graphene and hBN. In TFM, torsional motion of an Atomic Force Microscope (AFM) cantilever is monitored as it is actively driven at a torsional resonance while a feedback loop maintains contact at a set force with the sample surface. TFM works at room temperature in air, with no need for an electrical bias between the tip and the sample, making it applicable to a wide array of samples. It should enable determination of precise structural information including twist angles and strain in moiré superlattices and crystallographic orientation of van der Waals flakes to support predictable moiré heterostructure fabrication.

2.
Nature ; 556(7699): 74-79, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29590094

RESUMO

Majorana zero-modes-a type of localized quasiparticle-hold great promise for topological quantum computing. Tunnelling spectroscopy in electrical transport is the primary tool for identifying the presence of Majorana zero-modes, for instance as a zero-bias peak in differential conductance. The height of the Majorana zero-bias peak is predicted to be quantized at the universal conductance value of 2e2/h at zero temperature (where e is the charge of an electron and h is the Planck constant), as a direct consequence of the famous Majorana symmetry in which a particle is its own antiparticle. The Majorana symmetry protects the quantization against disorder, interactions and variations in the tunnel coupling. Previous experiments, however, have mostly shown zero-bias peaks much smaller than 2e2/h, with a recent observation of a peak height close to 2e2/h. Here we report a quantized conductance plateau at 2e2/h in the zero-bias conductance measured in indium antimonide semiconductor nanowires covered with an aluminium superconducting shell. The height of our zero-bias peak remains constant despite changing parameters such as the magnetic field and tunnel coupling, indicating that it is a quantized conductance plateau. We distinguish this quantized Majorana peak from possible non-Majorana origins by investigating its robustness to electric and magnetic fields as well as its temperature dependence. The observation of a quantized conductance plateau strongly supports the existence of Majorana zero-modes in the system, consequently paving the way for future braiding experiments that could lead to topological quantum computing.

3.
Nanotechnology ; 35(7)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37890472

RESUMO

Metal deposition with cryogenic cooling is a common technique in the condensed matter community for producing ultra-thin epitaxial superconducting layers on semiconductors. However, a significant challenge arises when these films return to room temperature, as they tend to undergo dewetting. This issue can be mitigated by capping the films with an amorphous layer. In this study, we investigate the influence of differentin situfabricated caps on the structural characteristics of Sn thin films deposited at 80 K on InSb substrates. Regardless of the type of capping, we consistently observe that the films remain smooth upon returning to room temperature and exhibit epitaxy on InSb in the cubic Sn (α-Sn) phase. Notably, we identify a correlation between alumina capping using an electron beam evaporator and an increased presence of tetragonal Sn (ß-Sn) grains. This suggests that heating from the alumina source may induce a partial phase transition in the Sn layer. The existence of theß-Sn phase induces superconducting behavior of the films by percolation effect. This study highlights the potential for tailoring the structural properties of cryogenic Sn thin films throughin situcapping. This development opens avenues for precise control in the production of superconducting Sn films, facilitating their integration into quantum computing platforms.

6.
Nano Lett ; 19(5): 3083-3090, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30912948

RESUMO

One-dimensional (1D) electronic transport and induced superconductivity in semiconductor nanostructures are crucial ingredients to realize topological superconductivity. Our approach for topological superconductivity employs a two-dimensional electron gas (2DEG) formed by an InAs quantum well, cleanly interfaced with an epitaxial superconductor (epi-Al). This epi-Al/InAs quantum well heterostructure is advantageous for fabricating large-scale nanostructures consisting of multiple Majorana zero modes. Here, we demonstrate transport studies of building-blocks using a high-quality epi-Al/InAs 2DEG heterostructure, which could be put together to realize various proposed 1D nanowire-based nanostructures and 2DEG-based networks that could host multiple Majorana zero modes. The studies include (1) gate-defined quasi-1D channels in the InAs 2DEG and (2) quantum point contacts for tunneling spectroscopy, as well as induced superconductivity in (3) a ballistic Al-InAs 2DEG-Al Josephson junction. From 1D transport, systematic evolution of conductance plateaus in half-integer conductance quanta is observed with Landé g-factor of 17, indicating the strong spin-orbit coupling and high quality of the InAs 2DEG. The improved 2DEG quality leads to ballistic Josephson junctions with enhanced characteristic parameters such as Ic Rn and Iexc Rn, the product of superconducting critical current Ic (and excess current Iexc) and normal resistance Rn. Our results of electronic transport studies based on the 2D approach suggest that the epitaxial superconductor/2D semiconductor system with improved 2DEG quality is suitable for realizing large-scale nanostructures for quantum computing applications.

7.
Nat Commun ; 14(1): 3078, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248246

RESUMO

The phenomenon of non-reciprocal critical current in a Josephson device, termed the Josephson diode effect, has garnered much recent interest. Realization of the diode effect requires inversion symmetry breaking, typically obtained by spin-orbit interactions. Here we report observation of the Josephson diode effect in a three-terminal Josephson device based upon an InAs quantum well two-dimensional electron gas proximitized by an epitaxial aluminum superconducting layer. We demonstrate that the diode efficiency in our devices can be tuned by a small out-of-plane magnetic field or by electrostatic gating. We show that the Josephson diode effect in these devices is a consequence of the artificial realization of a current-phase relation that contains higher harmonics. We also show nonlinear DC intermodulation and simultaneous two-signal rectification, enabled by the multi-terminal nature of the devices. Furthermore, we show that the diode effect is an inherent property of multi-terminal Josephson devices, establishing an immediately scalable approach by which potential applications of the Josephson diode effect can be realized, agnostic to the underlying material platform. These Josephson devices may also serve as gate-tunable building blocks in designing topologically protected qubits.

8.
Nat Commun ; 13(1): 5933, 2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209199

RESUMO

The Andreev bound state spectra of multi-terminal Josephson junctions form an artificial band structure, which is predicted to host tunable topological phases under certain conditions. However, the number of conductance modes between the terminals of a multi-terminal Josephson junction must be few in order for this spectrum to be experimentally accessible. In this work, we employ a quantum point contact geometry in three-terminal Josephson devices to demonstrate independent control of conductance modes between each pair of terminals and access to the single-mode regime coexistent with the presence of superconducting coupling. These results establish a full platform on which to realize tunable Andreev bound state spectra in multi-terminal Josephson junctions.

9.
Sci Adv ; 8(16): eabm9896, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35452283

RESUMO

We study a Cooper pair transistor realized by two Josephson weak links that enclose a superconducting island in an InSb-Al hybrid nanowire. When the nanowire is subject to a magnetic field, isolated subgap levels arise in the superconducting island and, because of the Coulomb blockade, mediate a supercurrent by coherent cotunneling of Cooper pairs. We show that the supercurrent resulting from such cotunneling events exhibits, for low to moderate magnetic fields, a phase offset that discriminates even and odd charge ground states on the superconducting island. Notably, this phase offset persists when a subgap state approaches zero energy and, based on theoretical considerations, permits parity measurements of subgap states by supercurrent interferometry. Such supercurrent parity measurements could, in a series of experiments, provide an alternative approach for manipulating and protecting quantum information stored in the isolated subgap levels of superconducting islands.

10.
Nat Commun ; 9(1): 4801, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30442935

RESUMO

The number of electrons in small metallic or semiconducting islands is quantised. When tunnelling is enabled via opaque barriers this number can change by an integer. In superconductors the addition is in units of two electron charges (2e), reflecting that the Cooper pair condensate must have an even parity. This ground state (GS) is foundational for all superconducting qubit devices. Here, we study a hybrid superconducting-semiconducting island and find three typical GS evolutions in a parallel magnetic field: a robust 2e-periodic even-parity GS, a transition to a 2e-periodic odd-parity GS, and a transition from a 2e- to a 1e-periodic GS. The 2e-periodic odd-parity GS persistent in gate-voltage occurs when a spin-resolved subgap state crosses zero energy. For our 1e-periodic GSs we explicitly show the origin being a single zero-energy state gapped from the continuum, i.e., compatible with an Andreev bound states stabilized at zero energy or the presence of Majorana zero modes.

11.
Nat Commun ; 8(1): 472, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28883391

RESUMO

The principal challenge for achieving reconfigurable optical antennas and metasurfaces is the need to generate continuous and large tunability of subwavelength, low-Q resonators. We demonstrate continuous and steady-state refractive index tuning at mid-infrared wavelengths using temperature-dependent control over the low-loss plasma frequency in III-V semiconductors. In doped InSb we demonstrate nearly two-fold increase in the electron effective mass leading to a positive refractive index shift (Δn > 1.5) that is an order of magnitude greater than conventional thermo-optic effects. In undoped films we demonstrate more than 10-fold change in the thermal free-carrier concentration producing a near-unity negative refractive index shift. Exploiting both effects within a single resonator system-intrinsic InSb wires on a heavily doped (epsilon-near-zero) InSb substrate-we demonstrate dynamically steady-state tunable Mie resonances. The observed line-width resonance shifts (Δλ > 1.7 µm) suggest new avenues for highly tunable and steady-state mid-infrared semiconductor antennas.Achieving large tunability of subwavelength resonators is a central challenge in nanophotonics. Here the authors demonstrate refractive index tuning at mid-infrared wavelengths using temperature-dependent control over the low loss plasma frequency in III-V semiconductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA