Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Med ; 22(1): 425, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39350213

RESUMO

BACKGROUND: Accelerated biological aging has been verified to be a critical risk factor for a number of age-related diseases, but its role in dementia remained unclear. Whether it modified the effects of genetic factors was also unknown. This study evaluated the associations between accelerated biological aging and dementia and the moderating role of accelerated biological aging in the genetic susceptibility to the disease. METHODS: We included 200,731 participants in the UK biobank. Nine clinical blood biomarkers and chronological age were used to calculate Phenotypic age acceleration (PhenoAgeAccel), which is a novel indicator for accelerated biological aging. The associations of PhenoAgeAccel with dementia, both young-onset and late-onset dementia, were assessed by Cox proportional hazard models. Apolipoprotein E (APOE) alleles and polygenic risk scores (PRS) were used to evaluate the genetic risk of dementia. The interactions between genetic susceptibility and biological aging were tested on both multiplicative and additive scales. RESULTS: These findings showed individuals who were in the highest quartile of PhenoAgeAccel had a higher risk with incidence of dementia compared to individuals in the lowest quartile of PhenoAgeAccel (HR: 1.145 (95% CI: 1.050, 1.249)). Individuals with biologically older had a higher risk of dementia than individuals with biologically younger (HR: 1.069 (95% CI: 1.004, 1.138)). Furthermore, compared to individuals with biologically younger and low APOE ε4-related genetic risk, individuals with biologically younger and high APOE ε4-related genetic risk (HR:3.048 (95% CI: 2.811, 3.305)) had a higher risk of dementia than individuals with biologically older and high APOE ε4-related genetic risk (HR: 2.765 (95% CI: 2.523, 3.029)). Meanwhile, referring to low dementia PRS and biologically younger, the risk of dementia increased by 72.7% (HR: 1.727 (95% CI: 1.538, 1.939) in the biologically younger and high PRS group and 58.7% (HR: 1.587 (95% CI: 1.404, 1.793) in the biologically older and high PRS group, respectively. The negative interactions between PhenoAgeAccel with APOE ε4 and PRS were also tested on the additive scale. CONCLUSIONS: Accelerated biological aging could bring the extra risk of dementia but attenuate the effects of genetic risk on dementia. These findings provide insights for precise prevention and intervention of dementia.


Assuntos
Envelhecimento , Bancos de Espécimes Biológicos , Demência , Predisposição Genética para Doença , Humanos , Demência/genética , Demência/epidemiologia , Reino Unido/epidemiologia , Masculino , Feminino , Estudos Prospectivos , Idoso , Pessoa de Meia-Idade , Envelhecimento/genética , Incidência , Apolipoproteínas E/genética , Fatores de Risco , Adulto , Idoso de 80 Anos ou mais , Biobanco do Reino Unido
2.
J Clin Lab Anal ; 36(7): e24506, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35588441

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) are a kind of molecule that cannot code proteins, and their expression is dysregulated in diversified cancers. LncRNA PITPNA-AS1 has been shown to act as a tumor promoter in a variety of malignancies, but its function and regulatory mechanisms in lung squamous cell carcinoma (LUSC) are yet unknown. METHODS: The mRNA and protein expression of genes were examined by RT-qPCR, western blot, and IHC assay. The cell proliferation, migration, invasion, and stemness were detected through CCK-8, colony formation, Transwell and spheroid formation assays. The CD44+ and CD166+ -positive cells were detected through flow cytometry. The binding ability among genes through luciferase reporter and RNA pull-down assays. The tumor growth was detected through in vivo nude mice assay. RESULTS: The lncRNA PITPNA-AS1 had increased expression in LUSC and was linked to a poor prognosis. In LUSC, PITPNA-AS1 also enhanced cell proliferation, migration, invasion, and stemness. This mechanistic investigation showed that PITPNA-AS1 absorbed miR-223-3p and that miR-223-3p targeted PTN. MiR-223-3p inhibition or PTN overexpression might reverse the inhibitory effects of PITPNA-AS1 suppression on LUSC progression, as demonstrated by rescue experiments. In addition, the PITPNA-AS1/miR-223-3p/PTN axis accelerated tumor development in vivo. CONCLUSIONS: It is the first time we investigated the potential role and ceRNA regulatory mechanism of PITPNA-AS1 in LUSC. The data disclosed that PITPNA-AS1 upregulated PTN through sponging miR-223-3p to enhance the onset and progression of LUSC. These findings suggested the ceRNA axis may serve as a promising therapeutic biomarker for LUSC patients.


Assuntos
Carcinoma de Células Escamosas , Proteínas de Transporte , Citocinas , MicroRNAs , RNA Longo não Codificante , Animais , Carcinoma de Células Escamosas/genética , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Citocinas/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Pulmão/metabolismo , Camundongos , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
3.
Exp Ther Med ; 21(1): 63, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33365063

RESUMO

Tracheobronchial tuberculosis (TB) leads to airway stenosis, irreversible airway damage and even death. The present study aimed to identify biomarkers for the diagnosis of tracheobronchial stenosis (TBS) secondary to tracheobronchial TB. A cohort was recruited, including patients with TBS after tracheobronchial TB, TBS after tracheal intubation or tracheotomy (TIT) and no stenosis of early-stage lung cancer,. Proteomic profiling was performed to gain insight into the mechanisms of the pathological processes. Differentially expressed proteins in the serum and bronchial alveolar lavage fluid (BALF) from patients were detected by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Subsequently, ELISA was performed to validate the changes of protein levels in an additional cohort. MALDI-TOF MS revealed that 8 peptides in the serum, including myeloid-associated differentiation marker, keratin type I cytoskeletal 18, fibrinogen α-chain, angiotensinogen (AGT), apolipoprotein A-I (APOAI), clusterin and two uncharacterized peptides, and nine peptides in BALF, including argininosuccinate lyase, APOAI, AGT and five uncharacterized peptides, were differentially expressed (molecular-weight range, 1,000-10,000 Da) in the TB group compared with the TIT group. The ELISA results indicated that the changes in the protein levels had a similar trend as those identified by proteomic profiling. In conclusion, the present study identified proteins that may serve as potential biomarkers and provide novel insight into the molecular mechanisms underlying TBS after tracheobronchial TB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA