Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(26): 11781-11790, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38877971

RESUMO

Synergistic control of nitrogen oxides (NOx) and nitrogen-containing volatile organic compounds (NVOCs) from industrial furnaces is necessary. Generally, the elimination of n-butylamine (n-B), a typical pollutant of NVOCs, requires a catalyst with sufficient redox ability. This process induces the production of nitrogen-containing byproducts (NO, NO2, N2O), leading to lower N2 selectivity of NH3 selective catalytic reduction of NOx (NH3-SCR). Here, synergistic catalytic removal of NOx and n-B via spatially separated cooperative sites was originally demonstrated. Specifically, titania nanotubes supported CuOx-CeO2 (CuCe-TiO2 NTs) catalysts with spatially separated cooperative sites were creatively developed, which showed a broader active temperature window from 180 to 340 °C, with over 90% NOx conversion, 85% n-B conversion, and 90% N2 selectivity. A synergistic effect of the Cu and Ce sites was found. The catalytic oxidation of n-B mainly occurred at the Cu sites inside the tube, which ensured the regular occurrence of the NH3-SCR reaction on the outer Ce sites under the matching temperature window. In addition, the n-B oxidation would produce abundant intermediate NH2*, which could act as an extra reductant to promote NH3-SCR. Meanwhile, NH3-SCR could simultaneously remove the possible NOx byproducts of n-B decomposition. This novel strategy of constructing cooperative sites provides a distinct pathway for promoting the synergistic removal of n-B and NOx.


Assuntos
Óxidos de Nitrogênio , Catálise , Óxidos de Nitrogênio/química , Compostos Orgânicos Voláteis/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA