Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 30(8): 13690-13698, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35472976

RESUMO

Dissipative Kerr solitons in high quality microresonators have attracted much attention in the past few years. They provide ideal platforms for a number of applications. Here, we fabricate the Si3N4 microring resonator with anomalous dispersion for the generation of single soliton and soliton crystal. Based on the strong thermal effect in the high-Q microresonator, the location and strength of the avoided mode crossing in the device can be changed by the intracavity power. Because the existence of the avoided mode crossing can induce the perfect soliton crystal with specific soliton number, we could choose the appropriate pumped resonance mode and appropriate pump power to obtain the perfect soliton crystals on demand.

2.
Adv Mater ; 34(32): e2202688, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35766726

RESUMO

Superior fast charging is a desirable capability of lithium-ion batteries, which can make electric vehicles a strong competition to traditional fuel vehicles. However, the slow transport of solvated lithium ions in liquid electrolytes is a limiting factor. Here, a Lix Cu6 Sn5 intermetallic network is reported to address this issue. Based on electrochemical analysis and X-ray photoelectron spectroscopy mapping, it is demonstrated that the reported intermetallic network can form a high-speed solid-state lithium transport matrix throughout the electrode, which largely reduces the lithium-ion-concentration polarization effect in the graphite anode. Employing this design, superior fast-charging graphite/lithium cobalt oxide full cells are fabricated and tested under strict electrode conditions. At the charging rate of 6 C, the fabricated full cells show a capacity of 145 mAh g-1 with an extraordinary capacity retention of 96.6%. In addition, the full cell also exhibits good electrochemical stability at a high charging rate of 2 C over 100 cycles (96.0% of capacity retention) in comparison to traditional graphite-anode-based cells (86.1% of capacity retention). This work presents a new strategy for fast-charging lithium-ion batteries on the basis of high-speed solid-state lithium transport in intermetallic alloy hosts.

3.
Nat Commun ; 12(1): 4296, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34262051

RESUMO

Photoelectrochemical catalysis is an attractive way to provide direct hydrogen production from solar energy. However, solar conversion efficiencies are hindered by the fact that light harvesting has so far been of limited efficiency in the near-infrared region as compared to that in the visible and ultraviolet regions. Here we introduce near-infrared-active photoanodes that feature lattice-matched morphological hetero-nanostructures, a strategy that improves energy conversion efficiency by increasing light-harvesting spectral range and charge separation efficiency simultaneously. Specifically, we demonstrate a near-infrared-active morphological heterojunction comprised of BiSeTe ternary alloy nanotubes and ultrathin nanosheets. The heterojunction's hierarchical nanostructure separates charges at the lattice-matched interface of the two morphological components, preventing further carrier recombination. As a result, the photoanodes achieve an incident photon-to-current conversion efficiency of 36% at 800 nm in an electrolyte solution containing hole scavengers without a co-catalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA