Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 57(1): 52-67.e10, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38091995

RESUMO

The regulation of polymorphonuclear leukocyte (PMN) function by mechanical forces encountered during their migration across restrictive endothelial cell junctions is not well understood. Using genetic, imaging, microfluidic, and in vivo approaches, we demonstrated that the mechanosensor Piezo1 in PMN plasmalemma induced spike-like Ca2+ signals during trans-endothelial migration. Mechanosensing increased the bactericidal function of PMN entering tissue. Mice in which Piezo1 in PMNs was genetically deleted were defective in clearing bacteria, and their lungs were predisposed to severe infection. Adoptive transfer of Piezo1-activated PMNs into the lungs of Pseudomonas aeruginosa-infected mice or exposing PMNs to defined mechanical forces in microfluidic systems improved bacterial clearance phenotype of PMNs. Piezo1 transduced the mechanical signals activated during transmigration to upregulate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4, crucial for the increased PMN bactericidal activity. Thus, Piezo1 mechanosensing of increased PMN tension, while traversing the narrow endothelial adherens junctions, is a central mechanism activating the host-defense function of transmigrating PMNs.


Assuntos
Movimento Celular , Pulmão , Mecanotransdução Celular , Neutrófilos , Animais , Camundongos , Membrana Celular , Canais Iônicos/genética , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Atividade Bactericida do Sangue/genética , Mecanotransdução Celular/genética
2.
Proc Natl Acad Sci U S A ; 120(44): e2300095120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37874856

RESUMO

The splenic interendothelial slits fulfill the essential function of continuously filtering red blood cells (RBCs) from the bloodstream to eliminate abnormal and aged cells. To date, the process by which 8 [Formula: see text]m RBCs pass through 0.3 [Formula: see text]m-wide slits remains enigmatic. Does the slit caliber increase during RBC passage as sometimes suggested? Here, we elucidated the mechanisms that govern the RBC retention or passage dynamics in slits by combining multiscale modeling, live imaging, and microfluidic experiments on an original device with submicron-wide physiologically calibrated slits. We observed that healthy RBCs pass through 0.28 [Formula: see text]m-wide rigid slits at 37 °C. To achieve this feat, they must meet two requirements. Geometrically, their surface area-to-volume ratio must be compatible with a shape in two tether-connected equal spheres. Mechanically, the cells with a low surface area-to-volume ratio (28% of RBCs in a 0.4 [Formula: see text]m-wide slit) must locally unfold their spectrin cytoskeleton inside the slit. In contrast, activation of the mechanosensitive PIEZO1 channel is not required. The RBC transit time through the slits follows a [Formula: see text]1 and [Formula: see text]3 power law with in-slit pressure drop and slip width, respectively. This law is similar to that of a Newtonian fluid in a two-dimensional Poiseuille flow, showing that the dynamics of RBCs is controlled by their cytoplasmic viscosity. Altogether, our results show that filtration through submicron-wide slits is possible without further slit opening. Furthermore, our approach addresses the critical need for in vitro evaluation of splenic clearance of diseased or engineered RBCs for transfusion and drug delivery.


Assuntos
Eritrócitos , Baço , Eritrócitos/metabolismo , Citoesqueleto , Microfluídica , Espectrina/metabolismo
3.
J Infect Chemother ; 30(3): 208-212, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38012984

RESUMO

INTRODUCTION: As an infectious disease, tuberculosis (TB) poses a serious threat to public health. Although amikacin (AMK) is an important antibiotic for the treatment of drug-resistant TB, its resistance mechanisms are not fully understood. METHODS: To investigate the role of Rv3737 gene on AMK drug susceptibility, a Mycobacterium tuberculosis (M.tb) Rv3737 knockout strain (H37Rv△Rv3737) and a Mycobacterium smegmatis (M.sm) Rv3737 overexpressing strain (Msm/pMV261-Rv3737) were used to detect their minimal inhibitory concentrations (MICs) in this study. RESULTS: The AMK MICs of Rv3737 knockout and overexpressing strains were 4-fold lower and 2-fold higher than those of the wild-type and empty plasmid strains, respectively. The results of clinical isolates showed that no Rv3737 gene mutation was found to be associated with AMK susceptibility, while the rrs A1401G mutation remained the main mechanism of high level of AMK resistance (MIC>32 µg/ml). There was a positive correlation between Rv3737 mRNA expression level and AMK MIC. In the isolates with low-level AMK resistance (MIC = 4 µg/ml) without rrs A1401G mutation, the expression level of Rv3737 gene was significantly higher than those of susceptible isolates. CONCLUSIONS: In this study, the Rv3737 gene was reported for the first time for its effect on AMK susceptibility in M.tb. Although the rrs A1401G mutation remains the main reason of high-level AMK resistance, high expression of the Rv3737 gene was associated with low-level AMK resistance in clinical isolates.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Amicacina/farmacologia , Amicacina/uso terapêutico , Canamicina/farmacologia , Capreomicina/farmacologia , Capreomicina/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Mutação , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Testes de Sensibilidade Microbiana
4.
Blood ; 137(3): 398-409, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33036023

RESUMO

The final stages of mammalian erythropoiesis involve enucleation, membrane and proteome remodeling, and organelle clearance. Concomitantly, the erythroid membrane skeleton establishes a unique pseudohexagonal spectrin meshwork that is connected to the membrane through junctional complexes. The mechanism and signaling pathways involved in the coordination of these processes are unclear. The results of our study revealed an unexpected role of the membrane skeleton in the modulation of proteome remodeling and organelle clearance during the final stages of erythropoiesis. We found that diaphanous-related formin mDia2 is a master regulator of the integrity of the membrane skeleton through polymerization of actin protofilament in the junctional complex. The mDia2-deficient terminal erythroid cell contained a disorganized and rigid membrane skeleton that was ineffective in detaching the extruded nucleus. In addition, the disrupted skeleton failed to activate the endosomal sorting complex required for transport-III (ESCRT-III) complex, which led to a global defect in proteome remodeling, endolysosomal trafficking, and autophagic organelle clearance. Chmp5, a component of the ESCRT-III complex, is regulated by mDia2-dependent activation of the serum response factor and is essential for membrane remodeling and autophagosome-lysosome fusion. Mice with loss of Chmp5 in hematopoietic cells in vivo resembled the phenotypes in mDia2-knockout mice. Furthermore, overexpression of Chmp5 in mDia2-deficient hematopoietic stem and progenitor cells significantly restored terminal erythropoiesis in vivo. These findings reveal a formin-regulated signaling pathway that connects the membrane skeleton to proteome remodeling, enucleation, and organelle clearance during terminal erythropoiesis.


Assuntos
Eritroblastos/metabolismo , Membrana Eritrocítica/metabolismo , Organelas/metabolismo , Proteoma/metabolismo , Animais , Autofagossomos/metabolismo , Sequência de Bases , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Eritroblastos/ultraestrutura , Membrana Eritrocítica/ultraestrutura , Eritropoese , Lisossomos/metabolismo , Fusão de Membrana , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/metabolismo , NADPH Desidrogenase/deficiência , NADPH Desidrogenase/metabolismo , Organelas/ultraestrutura , Reticulócitos/metabolismo , Reticulócitos/ultraestrutura
5.
Soft Matter ; 18(3): 554-565, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34931640

RESUMO

Sickle cell anemia (SCA) is a disease that affects red blood cells (RBCs). Healthy RBCs are highly deformable objects that under flow can penetrate blood capillaries smaller than their typical size. In SCA there is an impaired deformability of some cells, which are much stiffer and with a different shape than healthy cells, and thereby affect regular blood flow. It is known that blood from patients with SCA has a higher viscosity than normal blood. However, it is unclear how the rigidity of cells is related to the viscosity of blood, in part because SCA patients are often treated with transfusions of variable amounts of normal RBCs and only a fraction of cells will be stiff. Here, we report systematic experimental measurements of the viscosity of a suspension varying the fraction of rigid particles within a suspension of healthy cells. We also perform systematic numerical simulations of a similar mixed suspension of soft RBCs, rigid particles, and their hydrodynamic interactions. Our results show that there is a rheological signature within blood viscosity to clearly identify the fraction of rigidified cells among healthy deformable cells down to a 5% volume fraction of rigidified cells. Although aggregation of RBCs is known to affect blood rheology at low shear rates, and our simulations mimic this effect via an adhesion potential, we show that such adhesion, or aggregation, is unlikely to provide a physical rationalization for the viscosity increase observed in the experiments at moderate shear rates due to rigidified cells. Through numerical simulations, we also highlight that most of the viscosity increase of the suspension is due to the rigidity of the particles rather than their sickled or spherical shape. Our results are relevant to better characterize SCA, provide useful insights relevant to rheological consequences of blood transfusions, and, more generally, extend to the rheology of mixed suspensions having particles with different rigidities, as well as offering possibilities for developments in the field of soft material composites.


Assuntos
Anemia Falciforme , Viscosidade Sanguínea , Eritrócitos , Humanos , Reologia , Viscosidade
6.
BMC Infect Dis ; 22(1): 256, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35287590

RESUMO

BACKGROUND: Rv3737 is the sole homologue of multifunctional transporter ThrE in Mycobacterium tuberculosis (Mtb). In this study, we aimed to investigate whether this transporter participates in vitro and in vivo survival of Mtb. METHODS: To characterize the role of Rv3737, we constructed and characterized a Mtb H37RvΔRv3737. This strain was evaluated for altered growth rate and macrophage survival using a cell model of infection. In addition, the comparative analysis was conducted to determine the association between Rv3737 mRNA expression and disease severity in active pulmonary TB patients. RESULTS: The H37RvΔRv3737 strain exhibited significantly slow growth rate compared to H37Rv-WT strain in standard culture medium. Additionally, the survival rate of H37Rv-WT strain in macrophages was 2 folds higher than that of H37RvΔRv3737 at 72 h. A significantly higher level of TNF-α and IL-6 mRNA expression was observed in macrophages infected with H37RvΔRv3737 as compared to H37Rv-WT. Of note, Rv3737 expression was significantly increased in clinical Mtb isolates than H37Rv-WT. The relative expression level of Rv3737 was positively correlated with lung cavity number of TB patients. Similarly, the higher Rv3737 mRNA level resulted in lower C(t) value by Xpert MTB/RIF assay, demonstrating that a positive correlation between Rv3737 expression and bacterial load in TB patients. CONCLUSIONS: Our data takes the lead in demonstrate that the threonine transporter Rv3737 is required for in vitro growth and survival of bacteria inside macrophages. In addition, the expression level of Rv3737 may be associated with bacterial load and disease severity in pulmonary tuberculosis patients.


Assuntos
Mycobacterium tuberculosis , Tuberculose dos Linfonodos , Tuberculose Pulmonar , Carga Bacteriana , Humanos , Mycobacterium tuberculosis/genética , Índice de Gravidade de Doença
7.
Mol Pharm ; 18(1): 124-147, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33346663

RESUMO

The rate and extent of drug release under physiological conditions is a key factor influencing the therapeutic activity of a formulation. Real-time detection of drug release by conventional pharmacokinetics approaches is confounded by low sensitivity, particularly in the case of tissue-targeted novel drug delivery systems, where low concentrations of the drug reach systemic circulation. We present a novel fluorescence turn-on platform for real-time monitoring of drug release from nanoparticles based on reversible fluorescence quenching in fluorescein esters. Fluorescein-conjugated carbon nanotubes (CNTs) were esterified with methotrexate in solution and solid phase, followed by supramolecular functionalization with a chemoenhancer (suramin) or/and a stealth agent (dextran sulfate). Suramin was found to increase the cytotoxicity of methotrexate in A549 cells. On the other hand, dextran sulfate exhibited no effect on cytotoxicity or cellular uptake of CNTs by A549 cells, while a decrease in cellular uptake of CNTs and cytotoxicity of methotrexate was observed in macrophages (RAW 264.7 cells). Similar results were also obtained when CNTs were replaced with graphene. Docking studies revealed that the conjugates are not internalized by folate receptors/transporters. Further, docking and molecular dynamics studies revealed the conjugates do not exhibit affinity toward the methotrexate target, dihydrofolate reductase. Molecular dynamics studies also revealed that distinct features of dextran-CNT and suramin-CNT interactions, characterized by π-π interactions between CNTs and dextran/suramin. Our study provides a simple, cost-effective, and scalable method for the synthesis of nanoparticles conferred with the ability to monitor drug release in real-time. This method could also be extended to other drugs and other types of nanoparticles.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Nanopartículas/química , Nanotubos de Carbono/química , Neoplasias/tratamento farmacológico , Células A549 , Animais , Linhagem Celular , Linhagem Celular Tumoral , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Fluorescência , Grafite/química , Humanos , Metotrexato/química , Metotrexato/farmacologia , Camundongos , Células RAW 264.7
8.
Biophys J ; 119(11): 2190-2204, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33130121

RESUMO

We present an analytical hyperelastic constitutive model of the red blood cell (erythrocyte) membrane based on recently improved characterizations of density and microscopic structure of its spectrin network from proteomics and cryo-electron tomography. The model includes distributions of both orientations and natural lengths of spectrin and updated copy numbers of proteins. By applying finite deformation to the spectrin network, we obtain the total free energy and stresses in terms of invariants of shear and area deformation. We generalize an expression of the initial shear modulus, which is independent of the number of molecular orientations within the network and also derive a simplified version of the model. We apply the model and its simplified version to analyze micropipette aspiration computationally and analytically and explore the effect of local cytoskeletal density change. We also explore the discrepancies among shear modulus values measured using different experimental techniques reported in the literature. We find that the model exhibits hardening behavior and can explain many of these discrepancies. Moreover, we find that the distribution of natural lengths plays a crucial role in the hardening behavior when the correct copy numbers of proteins are used. The initial shear modulus values we obtain using our current model (5.9-15.6 pN/µm) are close to the early estimates (6-9 pN/µm). This new, to our knowledge, constitutive model establishes a direct connection between the molecular structure of spectrin networks and constitutive laws and also defines a new picture of a much denser spectrin network than assumed in prior studies.


Assuntos
Membrana Eritrocítica , Espectrina , Citoesqueleto de Actina , Citoesqueleto , Eritrócitos
9.
Proc Natl Acad Sci U S A ; 113(28): 7804-9, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27354532

RESUMO

Red blood cells (RBCs) can be cleared from circulation when alterations in their size, shape, and deformability are detected. This function is modulated by the spleen-specific structure of the interendothelial slit (IES). Here, we present a unique physiological framework for development of prognostic markers in RBC diseases by quantifying biophysical limits for RBCs to pass through the IES, using computational simulations based on dissipative particle dynamics. The results show that the spleen selects RBCs for continued circulation based on their geometry, consistent with prior in vivo observations. A companion analysis provides critical bounds relating surface area and volume for healthy RBCs beyond which the RBCs fail the "physical fitness test" to pass through the IES, supporting independent experiments. Our results suggest that the spleen plays an important role in determining distributions of size and shape of healthy RBCs. Because mechanical retention of infected RBC impacts malaria pathogenesis, we studied key biophysical parameters for RBCs infected with Plasmodium falciparum as they cross the IES. In agreement with experimental results, surface area loss of an infected RBC is found to be a more important determinant of splenic retention than its membrane stiffness. The simulations provide insights into the effects of pressure gradient across the IES on RBC retention. By providing quantitative biophysical limits for RBCs to pass through the IES, the narrowest circulatory bottleneck in the spleen, our results offer a broad approach for developing quantitative markers for diseases such as hereditary spherocytosis, thalassemia, and malaria.


Assuntos
Eritrócitos/citologia , Modelos Teóricos , Baço/fisiologia , Fenômenos Biomecânicos , Simulação por Computador , Humanos , Plasmodium falciparum
10.
J Chem Phys ; 149(8): 085102, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30193482

RESUMO

We verify both theoretically and by simulation that an AC electric field, with a frequency much higher than the dissociation rate, can significantly accelerate the dissociation rate of biological molecules under isothermal conditions. The cumulative effect of the AC field is shown to break a key bottleneck by reducing the entropy (and increasing the free energy of the local minimum) via the alignment of the molecular dipole with the field. For frequencies below a resonant frequency which corresponds to the inverse Debye dipole relaxation time, the dissociation rate can be accelerated by a factor that scales as ω(ϵ'(ω)-1)E02 , where ω is the field frequency, E0 is the field amplitude, and ϵ'(ω) is the frequency-dependent real permittivity of the molecule. At large amplitudes, we find that the accelerated melting rate becomes universal, independent of duplex size and sequence, which is in drastic contrast to Ohmic thermal melting. We confirm our theory with isothermal all-atomic molecular dynamics simulation of short DNA duplexes with known melting rates, demonstrating several orders in enhancement with realistic fields.


Assuntos
DNA/química , Campos Eletromagnéticos , Simulação de Dinâmica Molecular , Fenômenos Eletromagnéticos , Cinética , Modelos Biológicos , Desnaturação de Ácido Nucleico
11.
Proc Natl Acad Sci U S A ; 112(16): 4970-5, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25848039

RESUMO

Circulating tumor cells (CTCs) are important targets for cancer biology studies. To further elucidate the role of CTCs in cancer metastasis and prognosis, effective methods for isolating extremely rare tumor cells from peripheral blood must be developed. Acoustic-based methods, which are known to preserve the integrity, functionality, and viability of biological cells using label-free and contact-free sorting, have thus far not been successfully developed to isolate rare CTCs using clinical samples from cancer patients owing to technical constraints, insufficient throughput, and lack of long-term device stability. In this work, we demonstrate the development of an acoustic-based microfluidic device that is capable of high-throughput separation of CTCs from peripheral blood samples obtained from cancer patients. Our method uses tilted-angle standing surface acoustic waves. Parametric numerical simulations were performed to design optimum device geometry, tilt angle, and cell throughput that is more than 20 times higher than previously possible for such devices. We first validated the capability of this device by successfully separating low concentrations (∼100 cells/mL) of a variety of cancer cells from cell culture lines from WBCs with a recovery rate better than 83%. We then demonstrated the isolation of CTCs in blood samples obtained from patients with breast cancer. Our acoustic-based separation method thus offers the potential to serve as an invaluable supplemental tool in cancer research, diagnostics, drug efficacy assessment, and therapeutics owing to its excellent biocompatibility, simple design, and label-free automated operation while offering the capability to isolate rare CTCs in a viable state.


Assuntos
Acústica , Separação Celular/métodos , Células Neoplásicas Circulantes/patologia , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Eletricidade , Feminino , Imunofluorescência , Ensaios de Triagem em Larga Escala , Humanos
12.
J Chem Phys ; 147(13): 135101, 2017 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-28987107

RESUMO

By treating DNA as a vibrating nonlinear lattice, an activated kinetic theory for DNA melting is developed to capture the breakage of the hydrogen bonds and subsequent softening of torsional and bending vibration modes. With a coarse-grained lattice model, we identify a key bending mode with GHz frequency that replaces the hydrogen vibration modes as the dominant out-of-phase phonon vibration at the transition state. By associating its bending modulus to a universal in-phase bending vibration modulus at equilibrium, we can hence estimate the entropic change in the out-of-phase vibration from near-equilibrium all-atom simulations. This and estimates of torsional and bending entropy changes lead to the first predictive and sequence-dependent theory with good quantitative agreement with experimental data for the activation energy of melting of short DNA molecules without intermediate hairpin structures.


Assuntos
DNA/química , Entropia , Cinética , Modelos Moleculares , Conformação de Ácido Nucleico , Temperatura de Transição , Vibração
13.
Proc Natl Acad Sci U S A ; 111(36): 12992-7, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25157150

RESUMO

Separation of cells is a critical process for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers a means to separate cells on the basis of their size and physical properties in a label-free, contactless, and biocompatible manner. The separation sensitivity and efficiency of currently available acoustic-based approaches, however, are limited, thereby restricting their widespread application in research and health diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves (taSSAW), which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. We demonstrate that this design significantly improves the efficiency and sensitivity of acoustic separation techniques. To optimize our device design, we carried out systematic simulations of cell trajectories, matching closely with experimental results. Using numerically optimized design of taSSAW, we successfully separated 2- and 10-µm-diameter polystyrene beads with a separation efficiency of ∼ 99%, and separated 7.3- and 9.9-µm-polystyrene beads with an efficiency of ∼ 97%. We illustrate that taSSAW is capable of effectively separating particles-cells of approximately the same size and density but different compressibility. Finally, we demonstrate the effectiveness of the present technique for biological-biomedical applications by sorting MCF-7 human breast cancer cells from nonmalignant leukocytes, while preserving the integrity of the separated cells. The method introduced here thus offers a unique route for separating circulating tumor cells, and for label-free cell separation with potential applications in biological research, disease diagnostics, and clinical practice.


Assuntos
Separação Celular/métodos , Som , Proliferação de Células , Sobrevivência Celular , Simulação por Computador , Fluorescência , Humanos , Leucócitos/citologia , Células MCF-7 , Microesferas , Análise Numérica Assistida por Computador , Poliestirenos , Propriedades de Superfície
14.
Proc Natl Acad Sci U S A ; 110(33): 13356-61, 2013 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23898181

RESUMO

We study the biomechanical interactions between the lipid bilayer and the cytoskeleton in a red blood cell (RBC) by developing a general framework for mesoscopic simulations. We treated the lipid bilayer and the cytoskeleton as two distinct components and developed a unique whole-cell model of the RBC, using dissipative particle dynamics (DPD). The model is validated by comparing the predicted results with measurements from four different and independent experiments. First, we simulated the micropipette aspiration and quantified the cytoskeletal deformation. Second, we studied the membrane fluctuations of healthy RBCs and RBCs parasitized to different intraerythrocytic stages by the malaria-inducing parasite Plasmodium falciparum. Third, we subjected the RBC to shear flow and investigated the dependence of its tank-treading frequency on shear rate. Finally, we simulated the bilayer-cytoskeletal detachment in channel flow to quantify the strength of such interactions when the corresponding bonds break. Taken together, these experiments and corresponding systematic DPD simulations probe the governing constitutive response of the cytoskeleton, elastic stiffness, viscous friction, and strength of bilayer-cytoskeletal interactions as well as membrane viscosities. Hence, the DPD simulations and comparisons with available independent experiments serve as validation of the unique two-component model and lead to useful insights into the biomechanical interactions between the lipid bilayer and the cytoskeleton of the RBC. Furthermore, they provide a basis for further studies to probe cell mechanistic processes in health and disease in a manner that guides the design and interpretation of experiments and to develop simulations of phenomena that cannot be studied systematically by experiments alone.


Assuntos
Citoesqueleto/metabolismo , Eritrócitos/citologia , Eritrócitos/parasitologia , Bicamadas Lipídicas/metabolismo , Modelos Biológicos , Plasmodium falciparum , Fenômenos Biomecânicos , Simulação por Computador , Elasticidade , Humanos , Resistência ao Cisalhamento , Viscosidade
15.
Artigo em Inglês | MEDLINE | ID: mdl-38345187

RESUMO

The nuclear lamina is widely recognized as the most crucial component in providing mechanical stability to the nucleus. However, it is still a significant challenge to model the mechanics of this multilayered protein network. We developed a constitutive model of the nuclear lamina network based on its microstructure, which accounts for the deformation phases at the dimer level, as well as the orientational arrangement and density of lamin filaments. Instead of relying on homology modeling in the previous studies, we conducted molecular simulations to predict the force-extension response of a highly accurate lamin dimer structure obtained through X-ray diffraction crystallography experimentation. Furthermore, we devised a semiflexible worm-like chain extension-force model of lamin dimer as a substitute, incorporating phases of initial stretching, uncoiling of the dimer coiled-coil, and transition of secondary structures. Subsequently, we developed a 2D network continuum model for the nuclear lamina by using our extension-force lamin dimer model and derived stress resultants. By comparing with experimentally measured lamina modulus, we found that the lamina network has sharp initial strain-hardening behavior. This also enabled us to carry out finite element simulations of the entire nucleus with an accurate microstructure-based nuclear lamina model. Finally, we conducted simulations of transendothelial transmigration of a nucleus and investigated the impact of varying network density and uncoiling constants on the critical force required for successful transmigration. The model allows us to incorporate the microstructure characteristics of the nuclear lamina into the nucleus model, thereby gaining insights into how laminopathies and mutations affect nuclear mechanics.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38676536

RESUMO

A primary cilium, made of nine microtubule doublets enclosed in a cilium membrane, is a mechanosensing organelle that bends under an external mechanical load and sends an intracellular signal through transmembrane proteins activated by cilium bending. The nine microtubule doublets are the main load-bearing structural component, while the transmembrane proteins on the cilium membrane are the main sensing component. No distinction was made between these two components in all existing models, where the stress calculated from the structural component (nine microtubule doublets) was used to explain the sensing location, which may be totally misleading. For the first time, we developed a microstructure-based primary cilium model by considering these two components separately. First, we refined the analytical solution of bending an orthotropic cylindrical shell for individual microtubule, and obtained excellent agreement between finite element simulations and the theoretical predictions of a microtubule bending as a validation of the structural component in the model. Second, by integrating the cilium membrane with nine microtubule doublets and simulating the tip-anchored optical tweezer experiment on our computational model, we found that the microtubule doublets may twist significantly as the whole cilium bends. Third, besides being cilium-length-dependent, we found the mechanical properties of the cilium are also highly deformation-dependent. More important, we found that the cilium membrane near the base is not under pure in-plane tension or compression as previously thought, but has significant local bending stress. This challenges the traditional model of cilium mechanosensing, indicating that transmembrane proteins may be activated more by membrane curvature than membrane stretching. Finally, we incorporated imaging data of primary cilia into our microstructure-based cilium model, and found that comparing to the ideal model with uniform microtubule length, the imaging-informed model shows the nine microtubule doublets interact more evenly with the cilium membrane, and their contact locations can cause even higher bending curvature in the cilium membrane than near the base.

17.
Cell Microbiol ; 14(7): 983-93, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22417683

RESUMO

Gametocyte maturation in Plasmodium falciparum is a critical step in the transmission of malaria. While the majority of parasites proliferate asexually in red blood cells, a small fraction of parasites undergo sexual conversion and mature over 2 weeks to become competent for transmission to a mosquito vector. Immature gametocytes sequester in deep tissues while mature stages must be able to circulate, pass the spleen and present themselves to the mosquito vector in order to complete transmission. Sequestration of asexual red blood cell stage parasites has been investigated in great detail. These studies have demonstrated that induction of cytoadherence properties through specific receptor-ligand interactions coincides with a significant increase in host cell stiffness. In contrast, the adherence and biophysical properties of gametocyte-infected red blood cells have not been studied systematically. Utilizing a transgenic line for 3D live imaging, in vitro capillary assays and 3D finite element whole cell modelling, we studied the role of cellular deformability in determining the circulatory characteristics of gametocytes. Our analysis shows that the red blood cell deformability of immature gametocytes displays an overall decrease followed by rapid restoration in mature gametocytes. Intriguingly, simulations suggest that along with deformability variations, the morphological changes of the parasite may play an important role in tissue distribution in vivo. Taken together, we present a model, which suggests that mature but not immature gametocytes circulate in the peripheral blood for uptake in the mosquito blood meal and transmission to another human host thus ensuring long-term survival of the parasite.


Assuntos
Eritrócitos/fisiologia , Eritrócitos/parasitologia , Malária Falciparum/transmissão , Plasmodium falciparum/citologia , Plasmodium falciparum/patogenicidade , Animais , Culicidae/parasitologia , Feminino , Humanos , Imageamento Tridimensional , Masculino , Parasitemia
18.
bioRxiv ; 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37503231

RESUMO

A primary cilium, made of nine microtubule doublets enclosed in a cilium membrane, is a mechanosensing organelle that bends under an external mechanical load and sends an intracellular signal through transmembrane proteins activated by cilium bending. The nine microtubule doublets are the main load-bearing structural component, while the transmembrane proteins on the cilium membrane are the main sensing component. No distinction was made between these two components in all existing models, where the stress calculated from the structural component (nine microtubule doublets) was used to explain the sensing location, which may be totally misleading. For the first time, we developed a microstructure-based primary cilium model by considering these two components separately. First, we refined the analytical solution of bending an orthotropic cylindrical shell for individual microtubule, and obtained excellent agreement between finite element simulations and the theoretical predictions of a microtubule bending as a validation of the structural component in the model. Second, by integrating the cilium membrane with nine microtubule doublets, we found that the microtubule doublets may twist significantly as the whole cilium bends. Third, besides being cilium-length-dependent, we found the mechanical properties of the cilium are also highly deformation-dependent. More important, we found that the cilium membrane near the base is not under pure in-plane tension or compression as previously thought, but has significant local bending stress. This challenges the traditional model of cilium mechanosensing, indicating that transmembrane proteins may be activated more by membrane curvature than membrane stretching. Finally, we incorporated imaging data of primary cilia into our microstructure-based cilium model, and found that comparing to the ideal model with uniform microtubule length, the imaging-informed model shows the nine microtubule doublets interact more evenly with the cilium membrane, and their contact locations can cause even higher bending curvature in the cilium membrane than near the base. SIGNIFICANCE: Factors regulating the mechanical response of a primary cilium to fluid flow remain unclear. Modeling the microtubule doublet as a composite of two orthotropic shells and the ciliary axoneme as an elastic shell enclosing nine such microtubule doublets, we found that the length distribution of microtubule doublets (inferred from cryogenic electron tomography images) is the primary determining factor in the bending stiffness of primary cilia, rather than just the ciliary length. This implies ciliary-associated transmembrane proteins may be activated by membrane curvature changes rather than just membrane stretching. These insights challenge the traditional view of ciliary mechanosensation and expands our understanding of the different ways in which cells perceive and respond to mechanical stimuli.

19.
Micromachines (Basel) ; 14(9)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37763828

RESUMO

Microfluidic methods have proven to be effective in separation and isolation of cells for a wide range of biomedical applications. Among these methods, physical trapping is a label-free isolation approach that relies on cell size as the selective phenotype to retain target cells on-chip for follow-up analysis and imaging. In silico models have been used to optimize the design of such hydrodynamic traps and to investigate cancer cell transmigration through narrow constrictions. While most studies focus on computational fluid dynamics (CFD) analysis of flow over cells and/or pillar traps, a quantitative analysis of mechanical interaction between cells and trapping units is missing. The existing literature centers on longitudinally extended geometries (e.g., micro-vessels) to understand the biological phenomenon rather than designing an effective cell trap. In this work, we aim to make an experimentally informed prediction of the critical pressure for a cell to pass through a trapping unit as a function of cell morphology and trapping unit geometry. Our findings show that a hyperelastic material model accurately captures the stress-related softening behavior observed in cancer cells passing through micro-constrictions. These findings are used to develop a model capable of predicting and extrapolating critical pressure values. The validity of the model is assessed with experimental data. Regression analysis is used to derive a mathematical framework for critical pressure. Coupled with CFD analysis, one can use this formulation to design efficient microfluidic devices for cell trapping and potentially perform downstream analysis of trapped cells.

20.
Microsyst Nanoeng ; 9: 73, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37288322

RESUMO

Particle migration dynamics in viscoelastic fluids in spiral channels have attracted interest in recent years due to potential applications in the 3D focusing and label-free sorting of particles and cells. Despite a number of recent studies, the underlying mechanism of Dean-coupled elasto-inertial migration in spiral microchannels is not fully understood. In this work, for the first time, we experimentally demonstrate the evolution of particle focusing behavior along a channel downstream length at a high blockage ratio. We found that flow rate, device curvature, and medium viscosity play important roles in particle lateral migration. Our results illustrate the full focusing pattern along the downstream channel length, with side-view imaging yielding observations on the vertical migration of focused streams. Ultimately, we anticipate that these results will offer a useful guide for elasto-inertial microfluidics device design to improve the efficiency of 3D focusing in cell sorting and cytometry applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA