Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochemistry ; 52(37): 6335-47, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23964683

RESUMO

Domain 2 of the anthrax protective antigen (PA) prepore heptamer unfolds and refolds during endosome acidification to generate an extended 100 Å ß barrel pore that inserts into the endosomal membrane. The PA pore facilitates the pH-dependent unfolding and translocation of bound toxin enzymic components, lethal factor (LF) and/or edema factor, from the endosome to the cytoplasm. We constructed immobilized complexes of the prepore with the PA-binding domain of LF (LFN) to monitor the real-time prepore to pore kinetic transition using surface plasmon resonance and biolayer interferometry (BLI). The kinetics of this transition increased as the solution pH was decreased from 7.5 to 5.0, mirroring acidification of the endosome. Once it had undergone the transition, the LFN-PA pore complex was removed from the BLI biosensor tip and deposited onto electron microscopy grids, where PA pore formation was confirmed by negative stain electron microscopy. When the soluble receptor domain (ANTRX2/CMG2) binds the immobilized PA prepore, the transition to the pore state was observed only after the pH was lowered to early (pH 5.5) or late (pH 5.0) endosomal pH conditions. Once the pore formed, the soluble receptor readily dissociated from the PA pore. Separate binding experiments with immobilized PA pores and the soluble receptor indicate that the receptor has a weakened propensity to bind to the transitioned pore. This immobilized anthrax toxin platform can be used to identify or validate potential antimicrobial lead compounds capable of regulating and/or inhibiting anthrax toxin complex formation or pore transitions.


Assuntos
Antígenos de Bactérias/química , Toxinas Bacterianas/química , Endossomos/metabolismo , Proteínas Imobilizadas/química , Membranas Intracelulares/metabolismo , Antígenos de Bactérias/ultraestrutura , Técnicas Biossensoriais , Humanos , Concentração de Íons de Hidrogênio , Interferometria , Cinética , Micelas , Microscopia Eletrônica , Dobramento de Proteína , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Receptores de Peptídeos/metabolismo , Ressonância de Plasmônio de Superfície
2.
J Control Release ; 352: 623-636, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36349615

RESUMO

Glioblastoma (GBM) is the most aggressive primary malignant brain tumor, with a median survival of approximately 15 months. Treatment is limited by the blood-brain barrier (BBB) which restricts the passage of most drugs to the brain. We previously reported the design and synthesis of a BBB-penetrant macrocyclic cell-penetrating peptide conjugate (M13) covalently linked at the axial position of a Pt(IV) cisplatin prodrug. Here we show the Pt(IV)-M13 conjugate releases active cisplatin upon intracellular reduction and effects potent in vitro GBM cell killing. Pt(IV)-M13 significantly increased platinum uptake in an in vitro BBB spheroid model and intravenous administration of Pt(IV)-M13 in GBM tumor-bearing mice led to higher platinum levels in brain tissue and intratumorally compared with cisplatin. Pt(IV)-M13 administration was tolerated in naïve nude mice at higher dosage regimes than cisplatin and significantly extended survival above controls in a murine GBM xenograft model (median survival 33 days for Pt(IV)-M13 vs 24 days for Pt(IV) prodrug, 22.5 days for cisplatin and 22 days for control). Increased numbers of γH2AX nuclear foci, biomarkers of DNA damage, were observed in tumors of Pt(IV)-M13-treated mice, consistent with elevated platinum levels. The present work provides the first demonstration that systemic injection of a Pt(IV) complex conjugated to a brain-penetrant macrocyclic peptide can lead to increased platinum levels in the brain and extend survival in mouse GBM models, supporting further development of this approach and the utility of brain-penetrating macrocyclic peptide conjugates for delivering non-BBB penetrant drugs to the central nervous system.


Assuntos
Antineoplásicos , Glioblastoma , Pró-Fármacos , Humanos , Animais , Camundongos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Cisplatino , Pró-Fármacos/uso terapêutico , Platina , Camundongos Nus , Peptídeos/uso terapêutico , Encéfalo , Resultado do Tratamento , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Linhagem Celular Tumoral
3.
Science ; 368(6494): 980-987, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32467387

RESUMO

Ribosomes can produce proteins in minutes and are largely constrained to proteinogenic amino acids. Here, we report highly efficient chemistry matched with an automated fast-flow instrument for the direct manufacturing of peptide chains up to 164 amino acids long over 327 consecutive reactions. The machine is rapid: Peptide chain elongation is complete in hours. We demonstrate the utility of this approach by the chemical synthesis of nine different protein chains that represent enzymes, structural units, and regulatory factors. After purification and folding, the synthetic materials display biophysical and enzymatic properties comparable to the biologically expressed proteins. High-fidelity automated flow chemistry is an alternative for producing single-domain proteins without the ribosome.


Assuntos
Peptídeos/síntese química , Proteínas/síntese química , Técnicas de Síntese em Fase Sólida/métodos , Peptídeos/química , Peptídeos/isolamento & purificação , Domínios Proteicos , Dobramento de Proteína , Proteínas/química , Proteínas/isolamento & purificação
4.
Protein Sci ; 22(5): 586-94, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23494942

RESUMO

We have visualized by cryo-electron microscopy (cryo-EM) the complex of the anthrax protective antigen (PA) translocon and the N-terminal domain of anthrax lethal factor (LF(N) inserted into a nanodisc model lipid bilayer. We have determined the structure of this complex at a nominal resolution of 16 Å by single-particle analysis and three-dimensional reconstruction. Consistent with our previous analysis of negatively stained unliganded PA, the translocon comprises a globular structure (cap) separated from the nanodisc bilayer by a narrow stalk that terminates in a transmembrane channel (incompletely distinguished in this reconstruction). The globular cap is larger than the unliganded PA pore, probably due to distortions introduced in the previous negatively stained structures. The cap exhibits larger, more distinct radial protrusions, previously identified with PA domain three, fitted by elements of the NMFF PA prepore crystal structure. The presence of LF(N), though not distinguished due to the seven-fold averaging used in the reconstruction, contributes to the distinct protrusions on the cap rim volume distal to the membrane. Furthermore, the lumen of the cap region is less resolved than the unliganded negatively stained PA, due to the low contrast obtained in our images of this specimen. Presence of the LF(N) extended helix and N terminal unstructured regions may also contribute to this additional internal density within the interior of the cap. Initial NMFF fitting of the cryoEM-defined PA pore cap region positions the Phe clamp region of the PA pore translocon directly above an internal vestibule, consistent with its role in toxin translocation.


Assuntos
Antraz/microbiologia , Antígenos de Bactérias/química , Antígenos de Bactérias/ultraestrutura , Bacillus anthracis/química , Toxinas Bacterianas/química , Bacillus anthracis/ultraestrutura , Microscopia Crioeletrônica , Bicamadas Lipídicas/química
5.
Protein Sci ; 22(4): 492-501, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23389868

RESUMO

We have devised a procedure to incorporate the anthrax protective antigen (PA) pore complexed with the N-terminal domain of anthrax lethal factor (LFN ) into lipid nanodiscs and analyzed the resulting complexes by negative-stain electron microscopy. Insertion into nanodiscs was performed without relying on primary and secondary detergent screens. The preparations were relatively pure, and the percentage of PA pore inserted into nanodiscs on EM grids was high (∼43%). Three-dimensional analysis of negatively stained single particles revealed the LFN -PA nanodisc complex mirroring the previous unliganded PA pore nanodisc structure, but with additional protein density consistent with multiple bound LFN molecules on the PA cap region. The assembly procedure will facilitate collection of higher resolution cryo-EM LFN -PA nanodisc structures and use of advanced automated particle selection methods.


Assuntos
Antígenos de Bactérias/ultraestrutura , Lipídeos/química , Nanoestruturas/ultraestrutura , Antígenos de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Microscopia Crioeletrônica , Modelos Moleculares , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA