Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33920046

RESUMO

SmartBone® (SB) is a biohybrid bone substitute advantageously proposed as a class III medical device for bone regeneration in reconstructive surgeries (oral, maxillofacial, orthopedic, and oncology). In the present study, a new strategy to improve SB osteoinductivity was developed. SB scaffolds were loaded with lyosecretome, a freeze-dried formulation of mesenchymal stem cell (MSC)-secretome, containing proteins and extracellular vesicles (EVs). Lyosecretome-loaded SB scaffolds (SBlyo) were prepared using an absorption method. A burst release of proteins and EVs (38% and 50% after 30 min, respectively) was observed, and then proteins were released more slowly with respect to EVs, most likely because they more strongly adsorbed onto the SB surface. In vitro tests were conducted using adipose tissue-derived stromal vascular fraction (SVF) plated on SB or SBlyo. After 14 days, significant cell proliferation improvement was observed on SBlyo with respect to SB, where cells filled the cavities between the native trabeculae. On SB, on the other hand, the process was still present, but tissue formation was less organized at 60 days. On both scaffolds, cells differentiated into osteoblasts and were able to mineralize after 60 days. Nonetheless, SBlyo showed a higher expression of osteoblast markers and a higher quantity of newly formed trabeculae than SB alone. The quantification analysis of the newly formed mineralized tissue and the immunohistochemical studies demonstrated that SBlyo induces bone formation more effectively. This osteoinductive effect is likely due to the osteogenic factors present in the lyosecretome, such as fibronectin, alpha-2-macroglobulin, apolipoprotein A, and TGF-ß.


Assuntos
Matriz Óssea/química , Regeneração Óssea/efeitos dos fármacos , Substitutos Ósseos/farmacologia , Transplante de Células-Tronco Mesenquimais , Animais , Substitutos Ósseos/química , Bovinos , Diferenciação Celular/efeitos dos fármacos , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Vesículas Extracelulares/química , Vesículas Extracelulares/genética , Humanos , Células-Tronco Mesenquimais/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Procedimentos de Cirurgia Plástica/métodos
2.
Mar Drugs ; 18(12)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291602

RESUMO

The marine environment is a rich source of biologically active molecules for the treatment of human diseases, especially cancer. The adaptation to unique environmental conditions led marine organisms to evolve different pathways than their terrestrial counterparts, thus producing unique chemicals with a broad diversity and complexity. So far, more than 36,000 compounds have been isolated from marine micro- and macro-organisms including but not limited to fungi, bacteria, microalgae, macroalgae, sponges, corals, mollusks and tunicates, with hundreds of new marine natural products (MNPs) being discovered every year. Marine-based pharmaceuticals have started to impact modern pharmacology and different anti-cancer drugs derived from marine compounds have been approved for clinical use, such as: cytarabine, vidarabine, nelarabine (prodrug of ara-G), fludarabine phosphate (pro-drug of ara-A), trabectedin, eribulin mesylate, brentuximab vedotin, polatuzumab vedotin, enfortumab vedotin, belantamab mafodotin, plitidepsin, and lurbinectedin. This review focuses on the bioactive molecules derived from the marine environment with anticancer activity, discussing their families, origin, structural features and therapeutic use.


Assuntos
Antineoplásicos/química , Organismos Aquáticos/química , Toxinas Marinhas/química , Animais , Produtos Biológicos , Descoberta de Drogas , Humanos , Neoplasias/tratamento farmacológico , Microbiologia da Água
3.
J Clin Periodontol ; 46 Suppl 21: 92-102, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30623986

RESUMO

Bovine xenograft materials, followed by synthetic biomaterials, which unfortunately still lack documented predictability and clinical performance, dominate the market for the cranio-maxillofacial area. In Europe, new stringent regulations are expected to further limit the allograft market in the future. AIM: Within this narrative review, we discuss possible future biomaterials for bone replacement. SCIENTIFIC RATIONALE FOR STUDY: Although the bone graft (BG) literature is overflooded, only a handful of new BG substitutes are clinically available. Laboratory studies tend to focus on advanced production methods and novel biomaterial features, which can be costly to produce. PRACTICAL IMPLICATIONS: In this review, we ask why such a limited number of BGs are clinically available when compared to extensive laboratory studies. We also discuss what features are needed for an ideal BG. RESULTS: We have identified the key properties of current bone substitutes and have provided important information to guide clinical decision-making and generate new perspectives on bone substitutes. Our results indicated that different mechanical and biological properties are needed despite each having a broad spectrum of variations. CONCLUSIONS: We foresee bone replacement composite materials with higher levels of bioactivity, providing an appropriate balance between bioabsorption and volume maintenance for achieving ideal bone remodelling.


Assuntos
Materiais Biocompatíveis , Substitutos Ósseos , Animais , Transplante Ósseo , Bovinos , Europa (Continente) , Xenoenxertos
4.
J Craniofac Surg ; 30(3): 739-741, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30807480

RESUMO

This is a report of a 34-year-old male lacking of bone development in the frontal and orbital part of the skull due to a surgical removal of a right orbital-front osteoma at the age of 5. The integrity of the craniofacial district was important for the young patient also for social acceptance and self-esteem.Based on computed tomography patient images, a skull model was reconstructed, both digitally and on 3-dimensional real model, to best design the needed bone graft. Defect wide extension and surface curvature called for the use of the puzzle technique, where the whole graft is composed by several elements, mechanically slotting into each other. The realization was made possible thanks to the use of a composite xenohybrid bone substitute specifically developed for reconstructive surgery (SmartBone, by Industrie Biomediche Insubri SA). SmartBone technology allowed the realization of custom-made grafts which perfectly joined each other and fitted the bone defect thanks to mechanical strength, also at low thicknesses and wide extensions.The postoperative course was uneventful and computed tomography scans showed new bone formation and complete calvaria continuity already 10 months after surgery, with no signs of inflammation over the entire follow-up.This case study represents a proof of concept that SmartBone on Demand custom-made bone grafts, together with puzzle technique, are effective, easy to handle and provide final excellent functional and aesthetic results.


Assuntos
Transplante Ósseo/métodos , Procedimentos de Cirurgia Plástica/métodos , Crânio/cirurgia , Adulto , Craniotomia/efeitos adversos , Estética Dentária , Ossos Faciais/cirurgia , Seguimentos , Humanos , Masculino , Osteoma/cirurgia , Neoplasias Cranianas/cirurgia , Tomografia Computadorizada por Raios X/métodos
5.
Int Orthop ; 43(1): 15-23, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30311059

RESUMO

PURPOSE: Osteoarthritis (OA) is characterized by articular cartilage degeneration and subchondral bone sclerosis. OA can benefit of non-surgical treatments with collagenase-isolated stromal vascular fraction (SVF) or cultured-expanded mesenchymal stem cells (ASCs). To avoid high manipulation of the lipoaspirate needed to obtain ASCs and SVF, we investigated whether articular infusions of autologous concentrated adipose tissue are an effective treatment for knee OA patients. METHODS: The knee of 20 OA patients was intra-articularly injected with autologous concentrated adipose tissue, obtained after centrifugation of lipoaspirate. Patients' articular functionality and pain were evaluated by VAS and WOMAC scores at three, six and 18 months from infusion. The osteogenic and chondrogenic ability of ASCs contained in the injected adipose tissue was studied in in vitro primary osteoblast and chondrocyte cell cultures, also plated on 3D-bone scaffold. Knee articular biopsies of patients previously treated with adipose tissue were analyzed. Immunohistochemistry (IHC) and scanning electron microscopy (SEM) were performed to detect cell differentiation and tissue regeneration. RESULTS: The treatment resulted safe, and all patients reported an improvement in terms of pain reduction and increase of function. According to the osteogenic or chondrogenic stimulation, ASCs expressed alkaline phosphatase or aggrecan, respectively. The presence of a layer of newly formed tissue was visualized by IHC staining and SEM. The biopsy of previously treated knee joints showed new tissue formation, starting from the bone side of the osteochondral lesion. CONCLUSIONS: Overall our data indicate that adipose tissue infusion stimulates tissue regeneration and might be considered a safe treatment for knee OA.


Assuntos
Tecido Adiposo/transplante , Transplante de Células-Tronco Mesenquimais , Osteoartrite do Joelho/cirurgia , Tecido Adiposo/citologia , Idoso , Artroscopia , Feminino , Humanos , Injeções Intra-Articulares , Articulação do Joelho/cirurgia , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Pessoa de Meia-Idade , Transplante Autólogo
6.
Angew Chem Int Ed Engl ; 58(9): 2815-2819, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30644615

RESUMO

Circulating nucleic acids, such as short interfering RNA (siRNA), regulate many biological processes; however, the mechanism by which these molecules enter the cell is poorly understood. The role of extracellular-matrix-derived polymers in binding siRNAs and trafficking them across the plasma membrane is reported. Thermal melting, dynamic light scattering, scanning electron microscopy, and computational analysis indicate that hyaluronic acid can stabilize siRNA via hydrogen bonding and Van der Waals interactions. This stabilization facilitated HA size- and concentration-dependent gene silencing in a CD44-positive human osteosarcoma cell line (MG-63) and in human mesenchymal stromal cells (hMSCs). This native HA-based siRNA transfection represents the first report on an anionic, non-viral delivery method that resulted in approximately 60 % gene knockdown in both cell types tested, which correlated with a reduction in translation levels.


Assuntos
Materiais Biomiméticos/química , Ácido Hialurônico/química , RNA Interferente Pequeno/química , Ânions/química , Linhagem Celular Tumoral , Humanos , Modelos Moleculares
7.
Nanotechnology ; 26(1): 015602, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25490351

RESUMO

The possibility to direct pharmacological treatments targeting specific cell lines using polymer nanoparticles is one of the main novelties and perspectives in nanomedicine. However, sometimes, the ability to maintain NPs localized at the site of the injection that work as a drug reservoir can represent a good and complementary option. In this direction we built a composite material made of polymeric hydrogel functionalized with polymer NPs. ϵ-caprolactone and polyethylene glycol have been copolymerized in a two-step synthesis of PEGylated NPs, while hydrogel was synthesized through polycondensation between NPs, agarose and branched polyacrylic acid. NP functionalization was verified with Fourier transform infrared spectroscopy (FTIR), high resolution magic angle spinning-nuclear magnetic resonance (HRMAS-NMR) spectroscopy and release kinetics from a hydrogel matrix and compared with NPs only physically entrapped into a hydrogel matrix. The characteristics of the resulting composite hydrogel-NPs system were studied both in terms of rheological properties and in its ability to sustain the release of To-Pro3, used as a drug mimetic compound to represent a promising drug delivery device.


Assuntos
Portadores de Fármacos/síntese química , Sistemas de Liberação de Medicamentos/instrumentação , Hidrogel de Polietilenoglicol-Dimetacrilato/síntese química , Nanopartículas/química , Caproatos/química , Carbocianinas/farmacologia , Liberação Controlada de Fármacos , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Lactonas/química , Polietilenoglicóis/química , Polímeros/química
8.
Mol Pharm ; 11(11): 4036-48, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25230105

RESUMO

The present work is focused on the development and the validation of a mechanistic model describing the degradation of drug-loaded polylactic-co-glycolic acid microparticles and the drug release process from such devices. Microparticles' degradation is described through mass conservation equations; the application of population balances allows a detailed description of the hydrolysis kinetics, which also takes into account the autocatalytic behavior that characterizes bulk eroding polymers. Drug release considers both drug dissolution and the diffusion of dissolved active principle through the polymeric matrix. The diffusion of oligomers, water, and drug is assumed to follow Fickian behavior; the use of effective diffusion coefficients takes into account the diffusivity increase due to polymer hydrolysis. The model leads to a system of partial differential equations, solved by means of the method of lines. The model predictions satisfactorily match with different sets of literature data, indicating that the model presented here, despite its simplicity, is able to describe the key phenomena governing the device behavior.


Assuntos
Portadores de Fármacos/química , Liberação Controlada de Fármacos , Ácido Láctico/química , Modelos Teóricos , Ácido Poliglicólico/química , Polímeros/química , Sistemas de Liberação de Medicamentos , Cinética , Microesferas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
9.
ACS Appl Bio Mater ; 7(1): 80-98, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38158393

RESUMO

Current pharmacological and surgical therapies for the central nervous system (CNS) show a limited capacity to reduce the damage progression; that together with the intrinsic limited capability of the CNS to regenerate greatly reduces the hopes of recovery. Among all the therapies proposed, the tissue engineering strategies supplemented with therapeutic stem cells remain the most promising. Neural tissue engineering strategies are based on the development of devices presenting optimal physical, chemical, and mechanical properties which, once inserted in the injured site, can support therapeutic cells, limiting the effect of a hostile environment and supporting regenerative processes. Thus, this review focuses on the employment of hydrogel and nanofibrous scaffolds supplemented with stem cells as promising therapeutic tools for the central and peripheral nervous systems in preclinical and clinical applications.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Materiais Biocompatíveis/uso terapêutico , Materiais Biocompatíveis/química , Terapia Baseada em Transplante de Células e Tecidos , Sistema Nervoso Central , Hidrogéis/uso terapêutico , Hidrogéis/química
10.
Biomater Adv ; 159: 213801, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38401402

RESUMO

Obtaining rapid mineralisation is a challenge in current bone graft materials, which has been attributed to the difficulty of guiding the biological processes towards osteogenesis. Amelogenin, a key protein in enamel formation, inspired the design of two intrinsically disordered peptides (P2 and P6) that enhance in vivo bone formation, but the process is not fully understood. In this study, we have elucidated the mechanism by which these peptides induce improved mineralisation. Our molecular dynamics analysis demonstrated that in an aqueous environment, P2 and P6 fold to interact with the surrounding Ca2+, PO43- and OH- ions, which can lead to apatite nucleation. Although P2 has a less stable backbone, it folds to a stable structure that allows for the nucleation of larger calcium phosphate aggregates than P6. These results were validated experimentally in a concentrated simulated body fluid solution, where the peptide solutions accelerated the mineralisation process compared to the control and yielded mineral structures mimicking the amorphous calcium phosphate crystals that can be found in lamella bone. A pH drop for the peptide groups suggests depletion of calcium and phosphate, a prerequisite for intrinsic osteoinduction, while S/TEM and SEM suggested that the peptide regulated the mineral nucleation into lamella flakes. Evidently, the peptides accelerate and guide mineral formation, elucidating the mechanism for how these peptides can improve the efficacy of P2 or P6 containing devices for bone regeneration. The work also demonstrates how experimental mineralisation study coupled with molecular dynamics is a valid method for understanding and predicting in vivo performance prior to animal trials.


Assuntos
Regeneração Óssea , Osteogênese , Animais , Apatitas/química , Peptídeos/farmacologia , Osso e Ossos
11.
Mater Today Bio ; 27: 101117, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38975239

RESUMO

Spinal cord injury (SCI) is a devastating condition that can cause significant motor and sensory impairment. Microglia, the central nervous system's immune sentinels, are known to be promising therapeutic targets in both SCI and neurodegenerative diseases. The most effective way to deliver medications and control microglial inflammation is through nanovectors; however, because of the variability in microglial morphology and the lack of standardized techniques, it is still difficult to precisely measure their activation in preclinical models. This problem is especially important in SCI, where the intricacy of the glia response following traumatic events necessitates the use of a sophisticated method to automatically discern between various microglial cell activation states that vary over time and space as the secondary injury progresses. We address this issue by proposing a deep learning-based technique for quantifying microglial activation following drug-loaded nanovector treatment in a preclinical SCI model. Our method uses a convolutional neural network to segment and classify microglia based on morphological characteristics. Our approach's accuracy and efficiency are demonstrated through evaluation on a collection of histology pictures from injured and intact spinal cords. This robust computational technique has potential for analyzing microglial activation across various neuropathologies and demonstrating the usefulness of nanovectors in modifying microglia in SCI and other neurological disorders. It has the ability to speed development in this crucial sector by providing a standardized and objective way to compare therapeutic options.

12.
Mol Pharm ; 9(7): 1898-910, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22591074

RESUMO

In drug eluting stent technologies, an increased demand for better control, higher reliability, and enhanced performances of drug delivery systems emerged in the last years and thus offered the opportunity to introduce model-based approaches aimed to overcome the remarkable limits of trial-and-error methods. In this context a mathematical model was studied, based on detailed conservation equations and taking into account the main physical-chemical mechanisms involved in polymeric coating degradation, drug release, and restenosis inhibition. It allowed highlighting the interdependence between factors affecting each of these phenomena and, in particular, the influence of stent design parameters on drug antirestenotic efficacy. Therefore, the here-proposed model is aimed to simulate the diffusional release, for both in vitro and the in vivo conditions: results were verified against various literature data, confirming the reliability of the parameter estimation procedure. The hierarchical structure of this model also allows easily modifying the set of equations describing restenosis evolution to enhance model reliability and taking advantage of the deep understanding of physiological mechanisms governing the different stages of smooth muscle cell growth and proliferation. In addition, thanks to its simplicity and to the very low system requirements and central processing unit (CPU) time, our model allows obtaining immediate views of system behavior.


Assuntos
Materiais Revestidos Biocompatíveis/química , Stents Farmacológicos , Preparações Farmacêuticas/química , Polímeros/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Modelos Teóricos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Reprodutibilidade dos Testes
13.
Biomedicines ; 10(7)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35884981

RESUMO

Spinal cord injury (SCI) is an injurious process that begins with immediate physical damage to the spinal cord and associated tissues during an acute traumatic event. However, the tissue damage expands in both intensity and volume in the subsequent subacute phase. At this stage, numerous events exacerbate the pathological condition, and therein lies the main cause of post-traumatic neural degeneration, which then ends with the chronic phase. In recent years, therapeutic interventions addressing different neurodegenerative mechanisms have been proposed, but have met with limited success when translated into clinical settings. The underlying reasons for this are that the pathogenesis of SCI is a continued multifactorial disease, and the treatment of only one factor is not sufficient to curb neural degeneration and resulting paralysis. Recent advances have led to the development of biomaterials aiming to promote in situ combinatorial strategies using drugs/biomolecules to achieve a maximized multitarget approach. This review provides an overview of single and combinatorial regenerative-factor-based treatments as well as potential delivery options to treat SCIs.

14.
Bioeng Transl Med ; 7(2): e10295, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35600661

RESUMO

Musculoskeletal defects are an enormous healthcare burden and source of pain and disability for individuals. With an aging population, the proportion of individuals living with these medical indications will increase. Simultaneously, there is pressure on healthcare providers to source efficient solutions, which are cheaper and less invasive than conventional technology. This has led to an increased research focus on hydrogels as highly biocompatible biomaterials that can be delivered through minimally invasive procedures. This review will discuss how hydrogels can be designed for clinical translation, particularly in the context of the new European Medical Device Regulation (MDR). We will then do a deep dive into the clinically used hydrogel solutions that have been commercially approved or have undergone clinical trials in Europe or the United States. We will discuss the therapeutic mechanism and limitations of these products. Due to the vast application areas of hydrogels, this work focuses only on treatments of cartilage, bone, and the nucleus pulposus. Lastly, the main steps toward clinical translation of hydrogels as medical devices are outlined. We suggest a framework for how academics can assist small and medium MedTech enterprises conducting the initial clinical investigation and post-market clinical follow-up required in the MDR. It is evident that the successful translation of hydrogels is governed by acquiring high-quality pre-clinical and clinical data confirming the device mechanism of action and safety.

15.
Acta Biomater ; 154: 641-649, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36261107

RESUMO

We previously described an immortalized, genetically-engineered human Mesenchymal stromal cell line to generate BMP2-enriched Chondrogenic Matrices (MB-CM), which after devitalization and storage could efficiently induce ectopic bone tissue by endochondral ossification. In order to increase the efficiency of MB-CM utilization towards engineering scaled-up bone structures, here we hypothesized that MB-CM can retain osteoinductive properties when combined with an osteoconductive material. We first tested different volumetric ratios of MB-CM:SmartBone® (as clinically used, osteoconductive reference material) and assessed the bone formation capacity of the resulting composites following ectopic mouse implantation. After 8 weeks, as little as 25% of MB-CM was sufficient to induce bone formation and fusion across SmartBone® granules, generating large interconnected bony structures. The same composite percentage was then further assessed in a scaled-up model, namely within an axially-vascularized, confined, ectopically prefabricated flap (0.8 cm3) in rats. The material efficiently induced the formation of new bone (31% of the cross-sectional area after 8 weeks), including bone marrow and vascular elements, throughout the flap volume. Our findings outline a strategy for efficient use of MB-CM as part of a composite material, thereby reducing the amount required to fill large spaces and enabling utilization in critically sized grafts, to address challenging clinical scenarios in bone reconstruction. STATEMENT OF SIGNIFICANCE: Most bone repair strategies rely either on osteconductive properties of ceramics and devitalized bone, or osteoinductive properties of growth factors and extracellular matrices (ECM). Here we designed a composite material made of a clinically accepted osteoconductive material and an off-the-shelf tissue engineered human cartilage ECM with strong osteoinductive properties. We showed that low amount of osteoinductive ECM potentiated host cells recruitment to form large vascularized bone structures in two different animal models, one being a challenging prefabricated bone-flap model targeting challenging clinical bone repair. Overall, this study highlights the use of a promising human off-the-shelf material for accelerated healing towards clinical applications.


Assuntos
Osteogênese , Engenharia Tecidual , Ratos , Camundongos , Humanos , Animais , Engenharia Tecidual/métodos , Cartilagem , Regeneração Óssea , Condrogênese
16.
Int J Mol Sci ; 12(6): 3857-70, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21747712

RESUMO

Structural characterization of poly-l-lactic acid (P(L)LA) and poly(glycolic acid) (PGA) oligomers containing three units was carried out with an atomistic approach. Oligomer structures were first optimized through quantum chemical calculations, using density functional theory (DFT); rotational barriers concerning dihedral angles along the chain were then investigated. Diffusion coefficients of l-lactic acid and glycolic acid in pure water were estimated through molecular dynamic (MD) simulations. Monomer structures were obtained with quantum chemical computation in implicit water using DFT method; atomic charges were fitted with Restrained Electrostatic Potentials (RESP) formalism, starting from electrostatic potentials calculated with quantum chemistry. MD simulations were carried out in explicit water, in order to take into account solvent presence.


Assuntos
Ácido Láctico/química , Ácido Poliglicólico/química , Polímeros/química , Difusão , Glicolatos/química , Simulação de Dinâmica Molecular , Poliésteres , Teoria Quântica , Termodinâmica , Água/química
17.
Int J Mol Sci ; 12(6): 3394-408, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21747683

RESUMO

In this study hydrogels synthesized from agarose and carbomer 974P macromers were selected for their potential application in spinal cord injury (SCI) repair strategies following their ability to carry cells and drugs. Indeed, in drug delivery applications, one of the most important issues to be addressed concerns hydrogel ability to provide a finely controlled delivery of loaded drugs, together with a coherent degradation kinetic. Nevertheless, solute effects on drug delivery system are often neglected in the large body of literature, focusing only on the characterization of unloaded matrices. For this reason, in this work, hydrogels were loaded with a chromophoric salt able to mimic, in terms of steric hindrance, many steroids commonly used in SCI repair, and its effects were investigated both from a structural and a rheological point of view, considering the pH-sensitivity of the material. Additionally, degradation chemistry was assessed by means of infrared bond response (FT-IR) and mass loss.


Assuntos
Resinas Acrílicas/química , Ágar/química , Portadores de Fármacos/química , Hidrogéis/química , Soluções/química , Portadores de Fármacos/síntese química , Portadores de Fármacos/metabolismo , Hidrogéis/síntese química , Hidrogéis/metabolismo , Cinética , Reologia , Espectroscopia de Infravermelho com Transformada de Fourier , Esteroides/química , Esteroides/metabolismo
18.
Gels ; 6(1)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033057

RESUMO

Drug delivery is a fascinating research field with several development opportunities. Great attention is now focused on colloidal systems, nanoparticles, and nanogels and on the possibility of modifying them in order to obtain precise targeted drug delivery systems. The aim of this review is to give an overview of the main available surface functionalization and coating strategies that can be adopted in order to modify the selectivity of the nanoparticles in the delivery process and obtain a final system with great targeted drug delivery ability. We also highlight the most important fields of application of these kinds of delivery systems and we propose a comparison between the advantages and disadvantages of the described functionalization strategies.

19.
Artigo em Inglês | MEDLINE | ID: mdl-32714910

RESUMO

Polymeric nanoparticles, which by virtue of their size (1-1000 nm) are able to penetrate even into cells, are attracting increasing interest in the emerging field of nanomedicine, as devices for, e.g., drugs or vaccines delivery. Because of the involved dimensional scale in the nanoparticle/cell membrane interactions, modeling approaches at molecular level are the natural choice in order to understand the impact of nanoparticle formulation on cellular uptake mechanisms. In this work, the passive permeation across cell membrane of oligomers made of two employed polymers in the biomedical field [poly-D,L-lactic acid (PDLA) and poly(3-hydroxydecanoate) (P3HD)] is investigated at fundamental atomic scale through molecular dynamics simulations. The free energy profile related to membrane crossing is computed adopting umbrella sampling. Passive permeation is also investigated using a coarse-grained model with MARTINI force field, adopting well-tempered metadynamics. Simulation results showed that P3HD permeation is favored with respect to PDLA by virtue of its higher hydrophobicity. The free energy profiles obtained at full atomistic and coarse-grained scale are in good agreement each for P3HD, while only a qualitative agreement was obtained for PDLA. Results suggest that a reparameterization of non-bonded interactions of the adopted MARTINI beads for the oligomer is needed in order to obtain a better agreement with more accurate simulations at atomic scale.

20.
Expert Opin Biol Ther ; 20(10): 1203-1213, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32421405

RESUMO

INTRODUCTION: Spinal cord injury (SCI) is a dramatic medical pathology consequence of a trauma (primary injury). However, most of the post-traumatic degeneration of the tissue is caused by the so-called secondary injury, which is known to be a multifactorial process. This, indeed, includes a wide spectrum of events: blood-brain barrier dysfunction, local inflammation, neuronal death, demyelination and disconnection of nerve pathways. AREAS COVERED: Cell therapy represents a promising cure to target diseases and disorders at the cellular level, by restoring cell population or using cells as carriers of therapeutic cargo. In particular, regenerative medicine with stem cells represents the most appealing category to be used, thanks to their peculiar features. EXPERT OPINION: Many preclinical research studies demonstrated that cell treatment can improve animal sensory/motor functions and so demonstrated to be very promising for clinical trials. In particular, recent advances have led to the development of biomaterials aiming to promote in situ cell delivery. This review digs into this topic discussing the possibility of cell treatment to improve medical chances in SCI repair.


Assuntos
Materiais Biocompatíveis , Medicina Regenerativa , Traumatismos da Medula Espinal/terapia , Transplante de Células-Tronco , Células-Tronco/fisiologia , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Baseada em Transplante de Células e Tecidos/tendências , Humanos , Inflamação/complicações , Inflamação/patologia , Medicina Regenerativa/métodos , Medicina Regenerativa/tendências , Medula Espinal/fisiologia , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/patologia , Transplante de Células-Tronco/métodos , Transplante de Células-Tronco/tendências , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA