Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Biochemistry ; 62(2): 187-195, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36318941

RESUMO

Chemical biosensors are an increasingly ubiquitous part of our lives. Beyond enzyme-coupled assays, recent synthetic biology advances now allow us to hijack more complex biosensing systems to respond to difficult to detect analytes, such as chemical small molecules. Here, we briefly overview recent advances in the biosensing of small molecules, including nucleic acid aptamers, allosteric transcription factors, and two-component systems. We then look more closely at a recently developed chemical sensing system, G protein-coupled receptor (GPCR)-based sensors. Finally, we consider the chemical sensing capabilities of the largest GPCR subfamily, olfactory receptors (ORs). We examine ORs' role in nature, their potential as a biomedical target, and their ability to detect compounds not amenable for detection using other biological scaffolds. We conclude by evaluating the current challenges, opportunities, and future applications of GPCR- and OR-based sensors.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos , Receptores Odorantes , Receptores Acoplados a Proteínas G , Oligonucleotídeos
2.
Metab Eng ; 66: 283-295, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33930546

RESUMO

CRISPR-Cas transcriptional programming in bacteria is an emerging tool to regulate gene expression for metabolic pathway engineering. Here we implement CRISPR-Cas transcriptional activation (CRISPRa) in P. putida using a system previously developed in E. coli. We provide a methodology to transfer CRISPRa to a new host by first optimizing expression levels for the CRISPRa system components, and then applying rules for effective CRISPRa based on a systematic characterization of promoter features. Using this optimized system, we regulate biosynthesis in the biopterin and mevalonate pathways. We demonstrate that multiple genes can be activated simultaneously by targeting multiple promoters or by targeting a single promoter in a multi-gene operon. This work will enable new metabolic engineering strategies in P. putida and pave the way for CRISPR-Cas transcriptional programming in other bacterial species.


Assuntos
Engenharia Metabólica , Pseudomonas putida , Sistemas CRISPR-Cas/genética , Escherichia coli/genética , Pseudomonas putida/genética , Ativação Transcricional/genética
3.
Biochemistry ; 58(16): 2160-2166, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30977365

RESUMO

Olfactory receptors are ectopically expressed (exORs) in more than 16 different tissues. Studying the role of exORs is hindered by the lack of known ligands that activate these receptors. Of particular interest are exORs in the colon, the section of the gastrointestinal tract with the greatest diversity of microbiota where ORs may be participating in host-microbiome communication. Here, we leverage a G-protein-coupled receptor (GPCR)-based yeast sensor strain to generate sensors for seven ORs highly expressed in the colon. We screen the seven colon ORs against 57 chemicals likely to bind ORs in olfactory tissue. We successfully deorphanize two colon exORs for the first time, OR2T4 and OR10S1, and find alternative ligands for OR2A7. The same OR deorphanization workflow can be applied to the deorphanization of other ORs and GPCRs in general. Identification of ligands for OR2T4, OR10S1, and OR2A7 will enable the study of these ORs in the colon. Additionally, the colon OR-based sensors will enable the elucidation of endogenous colon metabolites that activate these receptors. Finally, deorphanization of OR2T4 and OR10S1 supports studies of the neuroscience of olfaction.


Assuntos
Colo/metabolismo , Receptores Odorantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Colo/microbiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Ligantes , Microbiota , Ligação Proteica , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Odorantes/genética , Saccharomyces cerevisiae/genética
4.
Nat Chem Biol ; 13(3): 249-258, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28199297

RESUMO

Alkaloid-derived pharmaceuticals are commonly semisynthesized from plant-extracted starting materials, which often limits their availability and final price. Recent advances in synthetic biology have enabled the introduction of complete plant pathways into microbes for the production of plant alkaloids. Microbial production of modified alkaloids has the potential to accelerate the semisynthesis of alkaloid-derived drugs by providing advanced intermediates that are structurally closer to the final pharmaceuticals and could be used as advanced intermediates for the synthesis of novel drugs. Here, we analyze the scientific and engineering challenges that must be overcome to generate microbes to produce modified plant alkaloids that can provide more suitable intermediates to US Food and Drug Administration-approved pharmaceuticals. We highlight modified alkaloids that currently could be produced by leveraging existing alkaloid microbial platforms with minor variations to accelerate the semisynthesis of seven pharmaceuticals on the market.


Assuntos
Alcaloides/biossíntese , Engenharia Metabólica , Preparações Farmacêuticas/metabolismo , Alcaloides/química , Preparações Farmacêuticas/química , Plantas/química , Plantas/metabolismo
5.
Nature ; 488(7411): 320-8, 2012 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-22895337

RESUMO

Advanced biofuels produced by microorganisms have similar properties to petroleum-based fuels, and can 'drop in' to the existing transportation infrastructure. However, producing these biofuels in yields high enough to be useful requires the engineering of the microorganism's metabolism. Such engineering is not based on just one specific feedstock or host organism. Data-driven and synthetic-biology approaches can be used to optimize both the host and pathways to maximize fuel production. Despite some success, challenges still need to be met to move advanced biofuels towards commercialization, and to compete with more conventional fuels.


Assuntos
Biocombustíveis/provisão & distribuição , Engenharia Genética , Microbiologia , Álcoois/química , Álcoois/metabolismo , Biocombustíveis/economia , Biomassa , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Petróleo/metabolismo , Petróleo/estatística & dados numéricos , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Biologia Sintética , Terpenos/química , Terpenos/metabolismo , Meios de Transporte
6.
Proc Natl Acad Sci U S A ; 112(28): 8529-36, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26124102

RESUMO

The world's crop productivity is stagnating whereas population growth, rising affluence, and mandates for biofuels put increasing demands on agriculture. Meanwhile, demand for increasing cropland competes with equally crucial global sustainability and environmental protection needs. Addressing this looming agricultural crisis will be one of our greatest scientific challenges in the coming decades, and success will require substantial improvements at many levels. We assert that increasing the efficiency and productivity of photosynthesis in crop plants will be essential if this grand challenge is to be met. Here, we explore an array of prospective redesigns of plant systems at various scales, all aimed at increasing crop yields through improved photosynthetic efficiency and performance. Prospects range from straightforward alterations, already supported by preliminary evidence of feasibility, to substantial redesigns that are currently only conceptual, but that may be enabled by new developments in synthetic biology. Although some proposed redesigns are certain to face obstacles that will require alternate routes, the efforts should lead to new discoveries and technical advances with important impacts on the global problem of crop productivity and bioenergy production.


Assuntos
Biocombustíveis , Produtos Agrícolas/fisiologia , Abastecimento de Alimentos , Fotossíntese
7.
Biochemistry ; 56(41): 5471-5475, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28845660

RESUMO

Chemical biosensors, for which chemical detection triggers a fluorescent signal, have the potential to accelerate the screening of noncolorimetric chemicals produced by microbes, enabling the high-throughput engineering of enzymes and metabolic pathways. Here, we engineer a G-protein-coupled receptor (GPCR)-based sensor to detect serotonin produced by a producer microbe in the producer microbe's supernatant. Detecting a chemical in the producer microbe's supernatant is nontrivial because of the number of other metabolites and proteins present that could interfere with sensor performance. We validate the two-cell screening system for medium-throughput applications, opening the door to the rapid engineering of microbes for the increased production of serotonin. We focus on serotonin detection as serotonin levels limit the microbial production of hydroxystrictosidine, a modified alkaloid that could accelerate the semisynthesis of camptothecin-derived anticancer pharmaceuticals. This work shows the ease of generating GPCR-based chemical sensors and their ability to detect specific chemicals in complex aqueous solutions, such as microbial spent medium. In addition, this work sets the stage for the rapid engineering of serotonin-producing microbes.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Receptores 5-HT4 de Serotonina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Serotonina/análise , Engenharia Celular , Meios de Cultivo Condicionados/química , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Proteínas Ativadoras de GTPase/genética , Galactose/metabolismo , Deleção de Genes , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Cinética , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Fator de Acasalamento/genética , Receptores 5-HT4 de Serotonina/química , Receptores 5-HT4 de Serotonina/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/agonistas , Proteínas de Saccharomyces cerevisiae/genética , Serotonina/metabolismo , Espectrometria de Fluorescência
8.
Biotechnol Bioeng ; 114(11): 2628-2636, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28688209

RESUMO

Compartmentalization of metabolic pathways into organelles of the yeast Saccharomyces cerevisiae has been used to improve chemical production. Pathway compartmentalization aids chemical production by bringing enzymes into close proximity to one another, placing enzymes near key starting metabolites or essential co-factors, increasing the effective concentration of metabolic intermediates, and providing a more suitable chemical environment for enzymatic activity. Although several translocation tags have been used to localize enzymes to different yeast organelles, their translocation efficiencies have not been quantified. Here, we systematically quantify the translocation efficiencies of 10 commonly used S. cerevisiae tags by localizing green fluorescent protein (GFP) into three yeast organelles: the mitochondrion (4 tags), the vacuole (3 tags), and the peroxisome (3 tags). Further, we investigate whether plasmid copy number or mRNA levels vary with tag translocation efficiency. Quantification of the efficiencies of S. cerevisiae translocation tags provides an important resource for bioengineering practitioners when choosing a tag to compartmentalize their desired protein. Finally, these efficiencies can be used to determine the percentage of enzyme compartmentalization and, thus, help better quantify effects of compartmentalization on metabolic pathway efficiency.


Assuntos
Etiquetas de Sequências Expressas , Redes e Vias Metabólicas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Frações Subcelulares/metabolismo , Translocação Genética/genética , Perfilação da Expressão Gênica/métodos
10.
Proc Natl Acad Sci U S A ; 108(50): 19949-54, 2011 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-22123987

RESUMO

One approach to reducing the costs of advanced biofuel production from cellulosic biomass is to engineer a single microorganism to both digest plant biomass and produce hydrocarbons that have the properties of petrochemical fuels. Such an organism would require pathways for hydrocarbon production and the capacity to secrete sufficient enzymes to efficiently hydrolyze cellulose and hemicellulose. To demonstrate how one might engineer and coordinate all of the necessary components for a biomass-degrading, hydrocarbon-producing microorganism, we engineered a microorganism naïve to both processes, Escherichia coli, to grow using both the cellulose and hemicellulose fractions of several types of plant biomass pretreated with ionic liquids. Our engineered strains express cellulase, xylanase, beta-glucosidase, and xylobiosidase enzymes under control of native E. coli promoters selected to optimize growth on model cellulosic and hemicellulosic substrates. Furthermore, our strains grow using either the cellulose or hemicellulose components of ionic liquid-pretreated biomass or on both components when combined as a coculture. Both cellulolytic and hemicellulolytic strains were further engineered with three biofuel synthesis pathways to demonstrate the production of fuel substitutes or precursors suitable for gasoline, diesel, and jet engines directly from ionic liquid-treated switchgrass without externally supplied hydrolase enzymes. This demonstration represents a major advance toward realizing a consolidated bioprocess. With improvements in both biofuel synthesis pathways and biomass digestion capabilities, our approach could provide an economical route to production of advanced biofuels.


Assuntos
Biocombustíveis/análise , Biocombustíveis/microbiologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Engenharia Genética/métodos , Líquidos Iônicos/farmacologia , Panicum/efeitos dos fármacos , Biomassa , Escherichia coli/crescimento & desenvolvimento , Hidrólise/efeitos dos fármacos , Lignina/metabolismo , Panicum/metabolismo
11.
Curr Opin Biotechnol ; 87: 103138, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38728825

RESUMO

G protein-coupled receptors (GPCRs) are important pharmaceutical targets, working as entry points for signaling pathways involved in metabolic, neurological, and cardiovascular diseases. Although small molecules remain the major GPCR drug type, biologic therapeutics, such as peptides and antibodies, are increasingly found among clinical trials and Food and Drug Administration (FDA)-approved drugs. Here, we review state-of-the-art technologies for the engineering of biologics that target GPCRs, as well as proof-of-principle technologies that are ripe for this application. Looking ahead, inexpensive DNA synthesis will enable the routine generation of computationally predesigned libraries for use in display assays for the rapid discovery of GPCR binders. Advances in synthetic biology are enabling the increased throughput of functional GPCR assays to the point that they can be used to directly identify biologics that modulate GPCR activity. Finally, we give an overview of adjacent technologies that are ripe for application to discover biologics that target human GPCRs.


Assuntos
Produtos Biológicos , Descoberta de Drogas , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Produtos Biológicos/metabolismo , Descoberta de Drogas/métodos , Engenharia de Proteínas/métodos , Biologia Sintética/métodos
12.
Anal Bioanal Chem ; 405(14): 4969-73, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23568610

RESUMO

Mass spectrometry based technologies are promising as generalizable high-throughput assays for enzymatic activity. In one such technology, a specialized enzyme substrate probe is presented to a biological mixture potentially exhibiting enzymatic activity, followed by an in situ enrichment step using fluorous interactions and nanostructure-initiator mass spectrometry. This technology, known as Nimzyme, shows great potential but is limited by the need to synthesize custom substrate analogs. We describe a synthetic route that simplifies the production of these probes by fashioning their perfluorinated invariant portion as an alkylating agent. This way, a wide variety of compounds can be effectively transformed into enzyme activity probes. As a proof of principle, a chloramphenicol analog synthesized according to this methodology was used to detect chloramphenicol acetyltransferase activity in cell lysate. This verifies the validity of the synthetic strategy employed and constitutes the first reported application of Nimzyme to a non-carbohydrate-active enzyme. The simplified synthetic approach presented here may help advance the application of mass spectrometry to high-throughput enzyme activity determination.


Assuntos
Cloranfenicol O-Acetiltransferase/análise , Cloranfenicol O-Acetiltransferase/química , Cloranfenicol/análise , Cloranfenicol/química , Espectrometria de Massas/métodos , Técnicas de Sonda Molecular , Espectrometria de Fluorescência/métodos , Ativação Enzimática , Sondas Moleculares/síntese química
13.
Curr Opin Biotechnol ; 81: 102949, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37172422

RESUMO

Decarboxylation - the release of carbon dioxide (CO2) from a substrate - reduces the carbon yield of bioproduced chemicals. When overlaid onto central carbon metabolism, carbon-conservation networks (CCNs) that reroute flux around CO2 release can theoretically achieve higher carbon yields for products derived from intermediates that traditionally require CO2 release, such as acetyl-CoA. Recently, CCNs have started to be implemented in model organisms to produce compounds at higher carbon yields. However, implementation of CCNs in nonmodel hosts may have the greatest impact given their ability to assimilate a larger array of feedstocks, greater environmental tolerance, and unique biosynthetic pathways, ultimately enabling access to a wider range of products. Here, we review recent advances in CCNs with a focus on their application to nonmodel organisms. The differences in central carbon metabolism among different nonmodel hosts reveal opportunities to engineer and apply new CCNs.


Assuntos
Dióxido de Carbono , Dióxido de Carbono/metabolismo , Acetilcoenzima A/metabolismo
14.
Biosensors (Basel) ; 13(6)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37366936

RESUMO

Histamine receptor 2 (HRH2) blockers are used to treat peptic ulcers and gastric reflux. Chlorquinaldol and chloroxine, which contain an 8-hydroxyquinoline (8HQ) core, have recently been identified as blocking HRH2. To gain insight into the mode of action of 8HQ-based blockers, here, we leverage an HRH2-based sensor in yeast to evaluate the role of key residues in the HRH2 active site on histamine and 8HQ-based blocker binding. We find that the HRH2 mutations D98A, F254A, Y182A, and Y250A render the receptor inactive in the presence of histamine, while HRH2:D186A and HRH2:T190A retain residual activity. Based on molecular docking studies, this outcome correlates with the ability of the pharmacologically relevant histamine tautomers to interact with D98 via the charged amine. Docking studies also suggest that, unlike established HRH2 blockers that interact with both ends of the HRH2 binding site, 8HQ-based blockers interact with only one end, either the end framed by D98/Y250 or T190/D186. Experimentally, we find that chlorquinaldol and chloroxine still inactivate HRH2:D186A by shifting their engagement from D98 to Y250 in the case of chlorquinaldol and D186 to Y182 in the case of chloroxine. Importantly, the tyrosine interactions are supported by the intramolecular hydrogen bonding of the 8HQ-based blockers. The insight gained in this work will aid in the development of improved HRH2 therapeutics. More generally, this work demonstrates that Gprotein-coupled receptor (GPCR)-based sensors in yeast can help elucidate the mode of action of novel ligands for GPCRs, a family of receptors that bind 30% of FDA therapeutics.


Assuntos
Clorquinaldol , Histamina , Receptores Histamínicos H2/química , Receptores Histamínicos H2/genética , Receptores Histamínicos H2/metabolismo , Simulação de Acoplamento Molecular , Oxiquinolina , Saccharomyces cerevisiae/metabolismo , Receptores Histamínicos/química , Receptores Histamínicos/metabolismo
16.
ACS Synth Biol ; 11(8): 2820-2828, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35930594

RESUMO

Histamine receptor 2 (HRH2) activation in the stomach results in gastric acid secretion, and HRH2 blockers are used for the treatment of peptidic ulcers and acid reflux. Over-the-counter HRH2 blockers carry a five-membered aromatic heterocycle, with two of them additionally carrying a tertiary amine that decomposes to N-nitrosodimethylamine, a human carcinogen. To discover a novel HRH2 blocker scaffold to serve in the development of next-generation HRH2 blockers, we developed an HRH2-based sensor in yeast by linking human HRH2 activation to cell luminescence. We used the HRH2-based sensor to screen a 403-member anti-infection chemical library and identified three HRH2 blockers, chlorquinaldol, chloroxine, and broxyquinoline, all sharing an 8-hydroxyquinoline scaffold, which is not found among known HRH2 antagonists. Critically, we validate their HRH2-blocking ability in mammalian cells. Molecular docking suggests that the HRH2 blockers bind the histamine binding pocket and structure-activity data point toward these blockers acting as competitive antagonists. Chloroxine and broxyquinoline are antimicrobials that can be found in the gastrointestinal tract at concentrations that would block HRH2, thus likely modulating gastric acid secretion. Taken together, this work demonstrates the utility of GPCR-based sensors for rapid drug discovery applications, identifies a novel HRH2 blocker scaffold, and provides further evidence that antimicrobials not only target the human microbiota but also the human host.


Assuntos
Fagocitose , Receptores Histamínicos , Animais , Humanos , Mamíferos , Simulação de Acoplamento Molecular , Oxiquinolina
17.
Methods Mol Biol ; 2268: 77-84, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34085262

RESUMO

More than 30% of all pharmaceuticals target G-protein-coupled receptors (GPCRs). Here, we present a GPCR-based screen in yeast to identify ligands for human serotonin receptor 4 (5-HTR4). Serotonin receptor 4 agonists are used for the treatment of irritable bowel syndrome with constipation. Specifically, the HTR4-based screen couples activation of 5-HTR4 on the yeast cell surface to luciferase reporter expression. The HTR4-based screen has a throughput of one compound per second allowing the screening of more than a thousand compounds per day.


Assuntos
Receptores Acoplados a Proteínas G/agonistas , Receptores 5-HT4 de Serotonina/química , Saccharomyces cerevisiae/metabolismo , Agonistas do Receptor 5-HT4 de Serotonina/farmacologia , Avaliação Pré-Clínica de Medicamentos , Genes Reporter , Células HEK293 , Ensaios de Triagem em Larga Escala/métodos , Humanos , Ligantes , Luciferases/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores 5-HT4 de Serotonina/metabolismo , Saccharomyces cerevisiae/genética
18.
Nat Commun ; 12(1): 6166, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34697313

RESUMO

Mars colonization demands technological advances to enable the return of humans to Earth. Shipping the propellant and oxygen for a return journey is not viable. Considering the gravitational and atmospheric differences between Mars and Earth, we propose bioproduction of a Mars-specific rocket propellant, 2,3-butanediol (2,3-BDO), from CO2, sunlight and water on Mars via a biotechnology-enabled in situ resource utilization (bio-ISRU) strategy. Photosynthetic cyanobacteria convert Martian CO2 into sugars that are upgraded by engineered Escherichia coli into 2,3-BDO. A state-of-the-art bio-ISRU for 2,3-BDO production uses 32% less power and requires a 2.8-fold higher payload mass than proposed chemical ISRU strategies, and generates 44 tons of excess oxygen to support colonization. Attainable, model-guided biological and materials optimizations result in an optimized bio-ISRU that uses 59% less power and has a 13% lower payload mass, while still generating 20 tons excess oxygen. Addressing the identified challenges will advance prospects for interplanetary space travel.


Assuntos
Biotecnologia , Marte , Energia Renovável , Astronave , Biomassa , Butileno Glicóis/metabolismo , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Meio Ambiente Extraterreno , Humanos , Oxigênio/metabolismo , Fotossíntese , Reciclagem , Voo Espacial/instrumentação
19.
ACS Synth Biol ; 10(4): 670-681, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33749249

RESUMO

Membrane proteins are present in a wide array of cellular processes from primary and secondary metabolite synthesis to electron transport and single carbon metabolism. A key barrier to applying membrane proteins industrially is their difficult functional production. Beyond expression, folding, and membrane insertion, membrane protein activity is influenced by the physicochemical properties of the associated membrane, making it difficult to achieve optimal membrane protein performance outside the endogenous host. In this review, we highlight recent work on production of membrane proteins in membrane augmented cell-free systems (CFSs) and applications thereof. CFSs lack membranes and can thus be augmented with user-specified, tunable, mimetic membranes to generate customized environments for production of functional membrane proteins of interest. Membrane augmented CFSs would enable the synthesis of more complex plant secondary metabolites, the growth and division of synthetic cells for drug delivery and cell therapeutic applications, as well as enable green energy applications including methane capture and artificial photosynthesis.


Assuntos
Biotecnologia/métodos , Sistema Livre de Células , Produtos Biológicos/metabolismo , Lipossomos/metabolismo
20.
Curr Opin Biotechnol ; 64: 210-217, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32653805

RESUMO

G protein-coupled receptors (GPCRs) detect compounds on the cell surface and are the starting point of a number of medically relevant signaling cascades. Indeed, over 30% of FDA approved drugs target GPCRs, making them a primary target for drug discovery. Computational and experimental high-throughput screening (HTS) approaches of clinically relevant GPCRs are a first-line drug discovery effort in biomedical research. In this opinion, we review recent advances in GPCR HTS. We focus primarily on cell-based assays, and highlight recent advances in in vitro assays using purified receptors, and computational approaches for GPCR HTS. To date, GPCR HTS has led to the identification of new and repurposing of existing drugs, and the deorphanization of GPCRs with unknown ligands. As automation equipment becomes more common, GPCR HTS will move beyond a drug discovery tool to a key technology to probe basic biological processes that will have an outsized impact on personalized medicine.


Assuntos
Ensaios de Triagem em Larga Escala , Receptores Acoplados a Proteínas G , Descoberta de Drogas , Proteínas de Ligação ao GTP/metabolismo , Ligantes , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA