Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Vet Pathol ; 61(4): 550-561, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38619093

RESUMO

Gammaherpesviruses (γHVs) are recognized as important pathogens in humans but their relationship with other animal hosts, especially wildlife species, is less well characterized. Our objectives were to examine natural Eptesicus fuscus gammaherpesvirus (EfHV) infections in their host, the big brown bat (Eptesicus fuscus), and determine whether infection is associated with disease. In tissue samples from 132 individual big brown bats, EfHV DNA was detected by polymerase chain reaction in 41 bats. Tissues from 59 of these cases, including 17 from bats with detectable EfHV genomes, were analyzed. An EfHV isolate was obtained from one of the cases, and electron micrographs and whole genome sequencing were used to confirm that this was a unique isolate of EfHV. Although several bats exhibited various lesions, we did not establish EfHV infection as a cause. Latent infection, defined as RNAScope probe binding to viral latency-associated nuclear antigen in the absence of viral envelope glycoprotein probe binding, was found within cells of the lymphoid tissues. These cells also had colocalization of the B-cell probe targeting CD20 mRNA. Probe binding for both latency-associated nuclear antigen and a viral glycoprotein was observed in individual cells dispersed throughout the alveolar capillaries of the lung, which had characteristics of pulmonary intravascular macrophages. Cells with a similar distribution in bat lungs expressed major histocompatibility class II, a marker for antigen presenting cells, and the existence of pulmonary intravascular macrophages in bats was confirmed with transmission electron microscopy. The importance of this cell type in γHVs infections warrants further investigation.


Assuntos
Quirópteros , Gammaherpesvirinae , Infecções por Herpesviridae , Animais , Quirópteros/virologia , Gammaherpesvirinae/isolamento & purificação , Gammaherpesvirinae/genética , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/virologia , Infecções por Herpesviridae/patologia , Pulmão/virologia , Pulmão/patologia , Macrófagos Alveolares/virologia , DNA Viral/genética , Feminino , Tropismo Viral , Masculino , Genoma Viral
2.
Vet Pathol ; 61(4): 541-549, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38366808

RESUMO

Bats have many unique qualities amongst mammals; one of particular importance is their reported tolerance to viruses without developing disease. Here, the authors present evidence to the contrary by describing and demonstrating viral nucleic acids within lesions from eptesipox virus (EfPV) infection in big brown bats. One hundred and thirty bats submitted for necropsy from Saskatchewan, Canada, between 2017 and 2021 were screened for EfPV by polymerase chain reaction (PCR); 2 had amplifiable poxvirus DNA. The lesions associated with infection were oral and pharyngeal ulcerations and joint swelling in 2/2 and 1/2 cases, respectively. These changes were nonspecific for poxvirus infection, although intracytoplasmic viral inclusion bodies within the epithelium, as observed in 2/2 bats, are diagnostic when present. Viral nucleic acids, detected by in situ hybridization (ISH), were observed in the epithelium adjacent to ulcerative lesions from both cases and within the joint proliferation of 1 case. A new isolate of EfPV was obtained from 1 case and its identity was confirmed with electron microscopy and whole genome sequencing. Juxtanuclear replication factories were observed in most cells; however, rare intranuclear virus particles were also observed. The significance of the presence of virus particles within the nucleus is uncertain. Whole genome assembly indicated that the nucleotide sequence of the genome of this EfPV isolate was 99.7% identical to a previous isolate from big brown bats in Washington, USA between 2009 and 2011. This work demonstrates that bats are not resistant to the development of disease with viral infections and raises questions about the dogma of poxvirus intracytoplasmic replication.


Assuntos
Quirópteros , Infecções por Poxviridae , Poxviridae , Animais , Infecções por Poxviridae/veterinária , Infecções por Poxviridae/virologia , Infecções por Poxviridae/patologia , Quirópteros/virologia , Poxviridae/isolamento & purificação , Poxviridae/genética , DNA Viral/genética , Reação em Cadeia da Polimerase/veterinária , Saskatchewan , Feminino , Masculino , Hibridização In Situ/veterinária , Sequenciamento Completo do Genoma , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA