RESUMO
Factor H (FH)-related proteins are a group of partly characterized complement proteins thought to promote complement activation by competing with FH in binding to surface-bound C3b. Among them, FH-related protein 1 (FHR-1) is remarkable because of its association with atypical hemolytic uremic syndrome (aHUS) and other important diseases. Using a combination of biochemical, immunological, nuclear magnetic resonance, and computational approaches, we characterized a series of FHR-1 mutants (including 2 associated with aHUS) and unraveled the molecular bases of the so-called deregulation activity of FHR-1. In contrast with FH, FHR-1 lacks the capacity to bind sialic acids, which prevents C3b-binding competition between FH and FHR-1 in host-cell surfaces. aHUS-associated FHR-1 mutants are pathogenic because they have acquired the capacity to bind sialic acids, which increases FHR-1 avidity for surface-bound C3-activated fragments and results in C3b-binding competition with FH. FHR-1 binds to native C3, in addition to C3b, iC3b, and C3dg. This unexpected finding suggests that the mechanism by which surface-bound FHR-1 promotes complement activation is the attraction of native C3 to the cell surface. Although C3b-binding competition with FH is limited to aHUS-associated mutants, all surface-bound FHR-1 promotes complement activation, which is delimited by the FHR-1/FH activity ratio. Our data indicate that FHR-1 deregulation activity is important to sustain complement activation and C3 deposition at complement-activating surfaces. They also support that abnormally elevated FHR-1/FH activity ratios would perpetuate pathological complement dysregulation at complement-activating surfaces, which may explain the association of FHR-1 quantitative variations with diseases.
Assuntos
Síndrome Hemolítico-Urêmica Atípica , Proteínas Sanguíneas/química , Complemento C3/química , Mutação , Animais , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Complemento C3/genética , Complemento C3/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Ligação ProteicaRESUMO
Carbohydrates, either free or as glycans conjugated with other biomolecules, participate in a plethora of essential biological processes. Their apparent simplicity in terms of chemical functionality hides an extraordinary diversity and structural complexity. Deeply deciphering at the atomic level their structures is essential to understand their biological function and activities, but it is still a challenging task in need of complementary approaches and no generalized procedures are available to address the study of such complex, natural glycans. The versatility of Nuclear Magnetic Resonance spectroscopy (NMR) often makes it the preferred choice to study glycans and carbohydrates in solution media. The most basic NMR parameters, namely chemical shifts, coupling constants, and nuclear Overhauser effects, allow defining short or repetitive chain sequences and characterize their structures and local geometries either in the free state or when interacting with other biomolecules, rendering additional information on the molecular recognition processes. The increased accessibility to carbohydrate molecules extensively or selectively labeled with 13C is boosting the resolution and detail which analyzed glycan structures can reach. In turn, structural information derived from NMR complemented with molecular modeling and theoretical calculations can also provide dynamic information on the conformational flexibility of carbohydrate structures. Furthermore, using partially oriented media or paramagnetic perturbations, it has been possible to introduce additional longrange observables rendering structural information on longer and branched glycan chains. In this review, we provide examples of these studies and an overview of the recent and most relevant NMR applications in the glycobiology field.