Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Parasitol Res ; 112(6): 2367-71, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23559380

RESUMO

In this study, the larvicidal activity of an enriched fraction of the major lipophilic phenolic compounds from Hypericum carinatum Griseb. (Clusiaceae) was investigated against larvae of Aedes aegypti (Diptera: Culicidae), the main vector of dengue virus in Brazil. The larval mortality rate ranged 37.33 to 72.00 % at concentrations of 66-200 µg/mL. The effect demonstrated to be dose-dependent. The lethal concentration 50 % and confidence interval were 100 and 88-111 µg/mL, respectively. The results could be attributed to the presence of cariphenone A and cariphenone B in concentrations of 1.24 ± 0.04 and 0.56 ± 0.01 %, respectively, determined by high-performance liquid chromatography. Besides, the results reinforce the potential of genus Hypericum as source of alternative insecticides.


Assuntos
Aedes/efeitos dos fármacos , Benzofenonas/análise , Hypericum/química , Inseticidas/química , Inseticidas/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Animais , Benzofenonas/farmacologia , Bioensaio , Brasil , Insetos Vetores , Inseticidas/isolamento & purificação , Larva/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Análise de Sobrevida
2.
Vet Parasitol ; 317: 109907, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37001324

RESUMO

As the main vector for the bacterium Rickettsia rickettsii in Brazil, the tick Amblyomma sculptum is a parasite of great public health importance in this country. Wolbachia is an endosymbiont bacterium highly widespread among invertebrates and because of its impact on its hosts' biology, form a powerful alternative for pests and disease control. The aim of this study was to investigate the occurrence of this bacterium in A. sculptum. For this, 187 adult ticks collected in two municipalities in the interior of the state of São Paulo, Brazil, were analyzed using molecular techniques and bioinformatics tools. A total of 15 ticks were positive for the presence of Wolbachia. Phylogenetic analysis on the 16S rRNA gene indicated that the Wolbachia DNA sequences obtained in this investigation belonged to different clades, probably in supergroups B and F. This was the first study to report the occurrence of Wolbachia in A. sculptum and it enriches knowledge about the susceptibility of ticks to this bacterium. Now that we know that Wolbachia can be found in A. sculptum, the objective for a next study must be to investigate Wolbachia's possible origin in this tick.


Assuntos
Ixodidae , Rickettsia , Febre Maculosa das Montanhas Rochosas , Carrapatos , Wolbachia , Animais , Ixodidae/microbiologia , Febre Maculosa das Montanhas Rochosas/epidemiologia , Febre Maculosa das Montanhas Rochosas/microbiologia , Febre Maculosa das Montanhas Rochosas/veterinária , Amblyomma/genética , Wolbachia/genética , Filogenia , RNA Ribossômico 16S/genética , Brasil/epidemiologia , Carrapatos/microbiologia
3.
Pathogens ; 10(5)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925275

RESUMO

The Mayaro virus (MAYV) is an arbovirus that circulates mainly in tropical forests or rural areas in Latin America and is transmitted mainly by Haemagogus mosquitoes. The objective of this study was to evaluate the vector competence, microbiome, and the presence of Wolbachia in three Aedes albopictus populations infected with MAYV. The vector competence was assessed based on viral infection and transmission by RT-qPCR. In addition, the microbiome was evaluated by amplification of the 16S rRNA V4 region and PCR to detect the presence of Wolbachia (strain wAlbA/wAlbB). Our results show that all three populations were susceptible to MAYV infection. The potential transmission of the MAYV was consistent in all populations of naïve mosquitoes injected (more than 50%). The microbiome analysis revealed 118 OTUs (operational taxonomic unit) from the three populations, 8 phyla, 15 classes, 26 orders, 35 families, 65 genera, and 53 species. All populations had Pseudomonas and Wolbachia as predominant genera. There was no difference between the variables for MAYV and Wolbachia (wAlbA or wAlbB) in the abdomen. However, in the head + thorax samples at 14 dpi, there was a difference between the two populations, indicating a possible correlation between the presence of Wolbachia (wAlbB) and infection. Overall, we show evidence that Ae. albopictus displays significant infection and transmission competence for the MAYV in the laboratory, and its bacterial microbiota play an important role in the host, mainly the strains of Wolbachia. The influence of the intestinal microbiota of Ae. albopictus is poorly known, and a better understanding of these interactions would open new perspectives for disease control through the manipulation of microbial communities. The exact contribution of this mosquito species to the transmission of the MAYV in the field remains to be confirmed.

4.
Sci Rep ; 11(1): 10039, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976301

RESUMO

Field release of Wolbachia-infected Aedes aegypti has emerged as a promising solution to manage the transmission of dengue, Zika and chikungunya in endemic areas across the globe. Through an efficient self-dispersing mechanism, and the ability to induce virus-blocking properties, Wolbachia offers an unmatched potential to gradually modify wild Ae. aegypti populations turning them unsuitable disease vectors. Here we describe a proof-of-concept field trial carried out in a small community of Niterói, greater Rio de Janeiro, Brazil. Following the release of Wolbachia-infected eggs, we report here a successful invasion and long-term establishment of the bacterium across the territory, as denoted by stable high-infection indexes (> 80%). We have also demonstrated that refractoriness to dengue and Zika viruses, either thorough oral-feeding or intra-thoracic saliva challenging assays, was maintained over the adaptation to the natural environment of Southeastern Brazil. These findings further support Wolbachia's ability to invade local Ae. aegypti populations and impair disease transmission, and will pave the way for future epidemiological and economic impact assessments.


Assuntos
Aedes/virologia , Arbovírus/fisiologia , Mosquitos Vetores/virologia , Controle Biológico de Vetores/estatística & dados numéricos , Wolbachia , Animais , Brasil , Vírus da Dengue/isolamento & purificação , Feminino , Controle Biológico de Vetores/métodos , Zika virus/isolamento & purificação
5.
PLoS Negl Trop Dis ; 14(4): e0007518, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32287269

RESUMO

Newly emerging or re-emerging arthropod-borne viruses (arboviruses) are important causes of human morbidity and mortality worldwide. Arboviruses such as Dengue (DENV), Zika (ZIKV), Chikungunya (CHIKV), and West Nile virus (WNV) have undergone extensive geographic expansion in the tropical and sub-tropical regions of the world. In the Americas the main vectors of DENV, ZIKV, and CHIKV are mosquito species adapted to urban environments, namely Aedes aegypti and Aedes albopictus, whereas the main vector of WNV is Culex quinquefasciatus. Given the widespread distribution in the Americas and high permissiveness to arbovirus infection, these mosquito species may play a key role in the epidemiology of other arboviruses normally associated with sylvatic vectors. Here, we test this hypothesis by determining the vector competence of Ae. aegypti, Ae. albopictus, and Cx. quinquefasciatus to Mayaro (MAYV) virus, a sylvatic arbovirus transmitted mainly by Haemagogus janthinomys that has been causing an increasing number of outbreaks in South America, namely in Brazil. Using field mosquitoes from Brazil, female mosquitoes were experimentally infected, and their competence for infection and transmission rates of MAYV was evaluated. We found consistent infection rate for MAYV in Ae. aegypti (57.5%) and Ae. albopictus (61.6%), whereas very low rates were obtained for Cx. quinquefasciatus (2.5%). Concordantly, we observed high potential transmission ability in Ae. aegypti and Ae. albopictus (69.5% and 71.1% respectively), in contrast to Cx. quinquefasciatus, which could not transmit the MAYV. Notably, we found that very low quantities of virus present in the saliva (undetectable by RT-qPCR) were sufficiently virulent to guarantee transmission. Although Ae. aegypti and Ae. albopictus mosquitoes are not the main vectors for MAYV, our studies suggest that these mosquitoes could play a significant role in the transmission of this arbovirus, since both species showed significant vector competence for MAYV (Genotype D), under laboratory conditions.


Assuntos
Aedes/virologia , Infecções por Alphavirus/virologia , Alphavirus/isolamento & purificação , Culex/virologia , Transmissão de Doença Infecciosa , Alphavirus/genética , Alphavirus/crescimento & desenvolvimento , Infecções por Alphavirus/transmissão , Animais , Brasil , Feminino , Reação em Cadeia da Polimerase em Tempo Real , Saliva/virologia , Carga Viral
6.
Gates Open Res ; 3: 161, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31259313

RESUMO

Background: Yellow fever outbreaks have re-emerged in Brazil during 2016-18, with mortality rates up to 30%. Although urban transmission has not been reported since 1942, the risk of re-urbanization of yellow fever is significant, as Aedes aegypti is present in most tropical and sub-tropical cities in the World and still remains the main vector of urban YFV. Although the YFV vaccine is safe and effective, it does not always reach populations at greatest risk of infection and there is an acknowledged global shortage of vaccine supply. The introgression of Wolbachia bacteria into Ae. aegypti mosquito populations is being trialed in several countries ( www.worldmosquito.org) as a biocontrol method against dengue, Zika and chikungunya. Here, we studied the ability of Wolbachia to reduce the transmission potential of Ae. aegypti mosquitoes for Yellow fever virus (YFV). Methods: Two recently isolated YFV (primate and human) were used to challenge field-derived wild-type and Wolbachia-infected ( wMel +) Ae. aegypti mosquitoes. The YFV infection status was followed for 7, 14 and 21 days post-oral feeding (dpf). The YFV transmission potential of mosquitoes was evaluated via nano-injection of saliva into uninfected mosquitoes or by inoculation in mice. Results: We found that Wolbachia was able to significantly reduce the prevalence of mosquitoes with YFV infected heads and thoraces for both viral isolates. Furthermore, analyses of mosquito saliva, through indirect injection into naïve mosquitoes or via interferon-deficient mouse model, indicated Wolbachia was associated with profound reduction in the YFV transmission potential of mosquitoes (14dpf). Conclusions: Our results suggest that Wolbachia introgression could be used as a complementary strategy for prevention of urban yellow fever transmission, along with the human vaccination program.

7.
Sci Rep ; 8(1): 6889, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720714

RESUMO

Wolbachia, an intracellular endosymbiont present in up to 70% of all insect species, has been suggested as a sustainable strategy for the control of arboviruses such as Dengue, Zika and Chikungunya. As Mayaro virus outbreaks have also been reported in Latin American countries, the objective of this study was to evaluate the vector competence of Brazilian field-collected Ae. aegypti and the impact of Wolbachia (wMel strain) upon this virus. Our in vitro studies with Aag2 cells showed that Mayaro virus can rapidly multiply, whereas in wMel-infected Aag2 cells, viral growth was significantly impaired. In addition, C6/36 cells seem to have alterations when infected by Mayaro virus. In vivo experiments showed that field-collected Ae. aegypti mosquitoes are highly permissive to Mayaro virus infection, and high viral prevalence was observed in the saliva. On the other hand, Wolbachia-harboring mosquitoes showed significantly impaired capability to transmit Mayaro virus. Our results suggest that the use of Wolbachia-harboring mosquitoes may represent an effective mechanism for the reduction of Mayaro virus transmission throughout Latin America.


Assuntos
Aedes/virologia , Mosquitos Vetores/virologia , Togaviridae/fisiologia , Replicação Viral , Wolbachia/patogenicidade , Aedes/microbiologia , Animais , Linhagem Celular , Células Cultivadas , Feminino , Humanos , Mosquitos Vetores/microbiologia , Simbiose , Togaviridae/patogenicidade , Infecções por Togaviridae/transmissão
8.
PLoS One ; 12(7): e0181678, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28732048

RESUMO

Dengue represents a serious threat to human health, with billions of people living at risk of the disease. Wolbachia pipientis is a bacterial endosymbiont common to many insect species. Wolbachia transinfections in mosquito disease vectors have great value for disease control given the bacterium's ability to spread into wild mosquito populations, and to interfere with infections of pathogens, such as dengue virus. Aedes fluviatilis is a mosquito with a widespread distribution in Latin America, but its status as a dengue vector has not been clarified. Ae. fluviatilis is also naturally infected by the wFlu Wolbachia strain, which has been demonstrated to enhance infection with the avian malarial parasite Plasmodium gallinaceum. We performed experimental infections of Ae. fluviatilis with DENV-2 and DENV-3 isolates from Brazil via injection or oral feeding to provide insight into its competence for the virus. We also examined the effect of the native Wolbachia infection on the virus using a mosquito line where the wFlu infection had been cleared by antibiotic treatment. Through RT-qPCR, we observed that Ae. fluviatilis could become infected with both viruses via either method of infection, although at a lower rate than Aedes aegypti, the primary dengue vector. We then detected DENV-2 and DENV-3 in the saliva of injected mosquitoes, and observed that injection of DENV-3-infected saliva produced subsequent infections in naïve Ae. aegypti. However, across our data we observed no difference in prevalence of infection and viral load between Wolbachia-infected and -uninfected mosquitoes, suggesting that there is no effect of wFlu on dengue virus. Our results highlight that Ae. fluviatilis could potentially serve as a dengue vector under the right circumstances, although further testing is required to determine if this occurs in the field.


Assuntos
Aedes/microbiologia , Aedes/virologia , Culicidae/microbiologia , Culicidae/virologia , Vírus da Dengue/patogenicidade , Wolbachia/patogenicidade , Animais , Brasil , Dengue/virologia , Infecções por Bactérias Gram-Negativas/microbiologia , Insetos Vetores/microbiologia , Insetos Vetores/virologia , Controle Biológico de Vetores/métodos , Saliva/microbiologia , Saliva/virologia , Simbiose/fisiologia , Carga Viral/fisiologia , Replicação Viral/fisiologia
9.
Rev Soc Bras Med Trop ; 50(2): 235-238, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28562761

RESUMO

INTRODUCTION: This study registers Ascogregarina spp. infection in field populations of Aedes aegypti and Aedes albopictus in a subtropical region of Brazil. METHODS: Mosquito larvae collected in tires placed in four municipalities of Santa Catarina were identified morphologically and assessed for Ascogregarina sp. infection using morphological and molecular methods. RESULTS: Both mosquito species harbored Ascogregarina taiwanensis, whose genomic DNA was confirmed in both the Aedes species by PCR. DNA sequences were deposited in GenBank. Conclusion: Both Ae. albopictus e Ae. aegypti harbor Ascogregarina sp.


Assuntos
Aedes/parasitologia , Apicomplexa/isolamento & purificação , DNA de Helmintos/isolamento & purificação , Interações Hospedeiro-Parasita , Aedes/classificação , Animais , Apicomplexa/genética , Apicomplexa/fisiologia , Brasil , Reação em Cadeia da Polimerase
10.
Cien Saude Colet ; 21(7): 2179-88, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27383351

RESUMO

The resistance of some species of Anopheles to chemical insecticides is spreading quickly throughout the world and has hindered the actions of prevention and control of malaria. The main mechanism responsible for resistance in these insects appears to be the target site known as knock-down resistance (kdr), which causes mutations in the sodium channel. Even so, many countries have made significant progress in the prevention of malaria, focusing largely on vector control through long-lasting insecticide nets (LLINs), indoor residual spraying and (IRS) of insecticides. The objective of this review is to contribute with information on the more applied insecticides for the control of the main vectors of malaria, its effects, and the different mechanisms of resistance. Currently it is necessary to look for others alternatives, e.g. biological control and products derived from plants and fungi, by using other organisms as a possible regulator of the populations of malaria vectors in critical outbreaks.


Assuntos
Anopheles/efeitos dos fármacos , Anopheles/genética , Resistência a Inseticidas , Inseticidas/farmacologia , Agricultura , Animais
11.
Rev. Soc. Bras. Med. Trop ; Rev. Soc. Bras. Med. Trop;50(2): 235-238, Mar.-Apr. 2017. graf
Artigo em Inglês | LILACS | ID: biblio-1041400

RESUMO

Abstract INTRODUCTION This study registers Ascogregarina spp. infection in field populations of Aedes aegypti and Aedes albopictus in a subtropical region of Brazil. METHODS Mosquito larvae collected in tires placed in four municipalities of Santa Catarina were identified morphologically and assessed for Ascogregarina sp. infection using morphological and molecular methods. RESULTS Both mosquito species harbored Ascogregarina taiwanensis, whose genomic DNA was confirmed in both the Aedes species by PCR. DNA sequences were deposited in GenBank. Conclusion: Both Ae. albopictus e Ae. aegypti harbor Ascogregarina sp.


Assuntos
Animais , Apicomplexa/isolamento & purificação , DNA de Helmintos/isolamento & purificação , Aedes/parasitologia , Interações Hospedeiro-Parasita , Brasil , Reação em Cadeia da Polimerase , Apicomplexa/fisiologia , Apicomplexa/genética , Aedes/classificação
12.
Ciênc. Saúde Colet. (Impr.) ; Ciênc. Saúde Colet. (Impr.);21(7): 2179-2188, Jul. 2016.
Artigo em Inglês | LILACS | ID: lil-785920

RESUMO

Abstract The resistance of some species of Anopheles to chemical insecticides is spreading quickly throughout the world and has hindered the actions of prevention and control of malaria. The main mechanism responsible for resistance in these insects appears to be the target site known as knock-down resistance (kdr), which causes mutations in the sodium channel. Even so, many countries have made significant progress in the prevention of malaria, focusing largely on vector control through long-lasting insecticide nets (LLINs), indoor residual spraying and (IRS) of insecticides. The objective of this review is to contribute with information on the more applied insecticides for the control of the main vectors of malaria, its effects, and the different mechanisms of resistance. Currently it is necessary to look for others alternatives, e.g. biological control and products derived from plants and fungi, by using other organisms as a possible regulator of the populations of malaria vectors in critical outbreaks.


Resumo A resistência de algumas espécies de Anopheles a inseticidas químicos está se espalhando rapidamente por todo o mundo e tem dificultado as ações de prevenção e controle da malária. O principal mecanismo responsável pela resistência nestes insetos parece ser o sítio-alvo conhecido como resistência knock-down resistance (kdr), que causa mutações no canal de sódio. Mesmo assim, muitos países fizeram progressos significativos na prevenção da malária, concentrando-se em grande parte no controle do vetor através redes inseticidas de longa duração (RILD), e de pulverização residual interna (PRI) de inseticidas. O objetivo desta revisão é contribuir com informações sobre os inseticidas mais aplicados para o controle dos principais vetores da malária, seus efeitos, e os diferentes mecanismos de resistências. Atualmente é necessário olhar para outras alternativas, como por exemplo, controle biológico e produtos derivados de plantas e fungos, pela utilização de outros organismos como um possível regulador de populações de vetores da malária em surtos críticos.


Assuntos
Animais , Resistência a Inseticidas , Inseticidas/farmacologia , Anopheles/efeitos dos fármacos , Anopheles/genética , Agricultura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA