Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 19(3): 347-354, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36597812

RESUMO

The isotropic to ferroelectric nematic liquid transition was theoretically studied over one hundred years ago, but its experimental studies are rare. Here we present experimental results and theoretical considerations of novel electromechanical effects of ferroelectric nematic liquid crystal droplets coexisting with the isotropic melt. We find that the droplets have flat pancake-like shapes that are thinner than the sample thickness as long as there is room to increase the lateral droplet size. In the center of the droplets a wing-shaped defect with low birefringence is present that moves perpendicular to a weak in-plane electric field, and then extends and splits in two at higher fields. Parallel to the defect motion and extension, the entire droplet drifts along the electric field with a speed that is independent of the size of the droplet and is proportional to the amplitude of the electric field. After the field is increased above 1 mV µm-1 the entire droplet gets deformed and oscillates with the field. These observations led us to determine the polarization field and revealed the presence of a pair of positive and negative bound electric charges due to divergences of polarization around the defect volume.

2.
Adv Sci (Weinh) ; 11(9): e2305950, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38126584

RESUMO

Freestanding slender fluid filaments of room-temperature ferroelectric nematic liquid crystals are described. They are stabilized either by internal electric fields of bound charges formed due to polarization splay or by external voltage applied between suspending wires. The phenomenon is similar to those observed in dielectric fluids, such as deionized water, except that in ferroelectric nematic materials the voltages required are three orders of magnitudes smaller and the aspect ratio is much higher. The observed ferroelectric fluid threads are not only unique and novel but also offer measurements of basic physical quantities, such as the ferroelectric polarization and viscosity. Ferroelectric nematic fluid threads may have practical applications in nano-fluidic micron-size logic devices, switches, and relays.

3.
ACS Appl Mater Interfaces ; 13(3): 4574-4582, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33411492

RESUMO

Nematic liquid crystals of achiral molecules or racemic mixtures of chiral ones form flat films when suspended in submillimeter size grids and submerged under water. Recently, it has been shown (Popov et al., 2017) that films of nematic liquid crystals doped with chiral molecules adopt biconvex lens shapes underwater. The curved shape together with degenerate planar anchoring leads to a radial variation of the optical axis along the plane of the film, providing a Pancharatnam-Berry-type phase lens that modifies geometric optical imaging. Here, we describe nematic liquid crystal microlenses formed by the addition of chiral nanoparticles. It is found that the helical twisting power of the nanoparticles, the key factor to form the lens, is about 400 µm-1, greater than that of the strongest molecular chiral dopants. We demonstrate imaging capabilities and measure the shape as well as the focal length of the chiral nanoparticle-doped liquid crystal lens. We show that measuring the shape of the lens allows one to calculate the helical pitch of the chiral nematic liquid crystal and thus determine the helical twisting power of the chiral ligand-capped nanoparticles. Such measurements require the use of only nanograms of chiral nanoparticles, which is 3 orders of magnitude less than that required by conventional techniques. Since NPs are sensitive to external stimuli such as light and electric and magnetic fields, the use of chiral NPs may allow the achievement of tunable optical properties for such microlens arrays.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA