Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Lung Res ; 45(9-10): 310-322, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31762329

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive fibrotic lung disease with unknown cause. While the drugs nintedanib and pirfenidone have been approved for the treatment of IPF, they only slow disease progression and can induce several side-effects, suggesting that there is still an unmet need to develop new efficacious drugs, and interventions strategies, to combat this disease. We have recently developed a sheep model of pulmonary fibrosis for the preclinical testing of novel anti-fibrotic drugs. The aim of this study was to assess the effects of pirfenidone to ascertain its suitability as a benchmark for comparing other novel therapeutics in this sheep model. To initiate localized fibrosis, sheep were given two infusions of bleomycin (0.6 U/ml per infusion), a fortnight apart, to a specific lung segment. The contralateral lung segment in each sheep was infused with saline to act as an internal control. Two weeks after the final bleomycin infusion, either pirfenidone or methylcellulose (vehicle control) were administered orally to sheep twice daily for 5 weeks. Results showed that sheep treated with pirfenidone had improved lung function, ameliorated fibrotic pathology, lower numbers of active myofibroblasts, and reduced extra cellular matrix deposition when compared with the relevant measurements obtained from control sheep treated with vehicle. This study showed that pirfenidone can attenuate bleomycin-induced pulmonary fibrosis in sheep, and can therefore be used as a positive control to assess other novel therapeutics for IPF in this model.


Assuntos
Fibrose Pulmonar Idiopática/tratamento farmacológico , Pulmão/efeitos dos fármacos , Piridonas/farmacologia , Animais , Bleomicina/farmacologia , Modelos Animais de Doenças , Matriz Extracelular/efeitos dos fármacos , Feminino , Indóis/farmacologia , Miofibroblastos/efeitos dos fármacos , Ovinos
2.
Front Pharmacol ; 12: 700902, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744706

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive chronic lung disease characterized by excessive extracellular matrix (ECM) deposition in the parenchyma of the lung. Accompanying the fibrotic remodeling, dysregulated angiogenesis has been observed and implicated in the development and progression of pulmonary fibrosis. Copper is known to be required for key processes involved in fibrosis and angiogenesis. We therefore hypothesized that lowering bioavailable serum copper with tetrathiomolybdate could be of therapeutic value for treating pulmonary fibrosis. This study aimed to investigate the effect of tetrathiomolybdate on angiogenesis and fibrosis induced in sheep lung segments infused with bleomycin. Twenty sheep received two fortnightly infusions of either bleomycin (3U), or saline (control) into two spatially separate lung segments. A week after the final bleomycin/saline infusions, sheep were randomly assigned into two groups (n = 10 per group) and received twice-weekly intravenous administrations of either 50 mg tetrathiomolybdate, or sterile saline (vehicle control), for 6 weeks. Vascular density, expressed as the percentage of capillary area to the total area of parenchyma, was determined in lung tissue sections immuno-stained with antibodies against CD34 and collagen type IV. The degree of fibrosis was assessed by histopathology scoring of H&E stained sections and collagen content using Masson's trichrome staining. Lung compliance was measured via a wedged bronchoscope procedure prior to and 7 weeks following final bleomycin infusion. In this large animal model, we show that copper lowering by tetrathiomolybdate chelation attenuates both bleomycin-induced angiogenesis and pulmonary fibrosis. Moreover, tetrathiomolybdate treatment downregulates vascular endothelial growth factor (VEGF) expression, and improved lung function in bleomycin-induced pulmonary fibrosis. Tetrathiomolybdate also suppressed the accumulation of inflammatory cells in bronchoalveolar lavage fluid 2 weeks after bleomycin injury. The molecular mechanism(s) underpinning copper modulation of fibrotic pathways is an important area for future investigation, and it represents a potential therapeutic target for pulmonary fibrosis.

3.
Sci Rep ; 9(1): 19893, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882807

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with limited therapeutic options and poor prognosis. IPF has been associated with aberrant vascular remodelling, however the role of vascular remodelling in pulmonary fibrosis is poorly understood. Here, we used a novel segmental challenge model of bleomycin-induced pulmonary fibrosis in sheep to evaluate the remodelling of the pulmonary vasculature, and to investigate the changes to this remodelling after the administration of the KCa3.1 channel inhibitor, senicapoc, compared to the FDA-approved drug pirfenidone. We demonstrate that in vehicle-treated sheep, bleomycin-infused lung segments had significantly higher blood vessel density when compared to saline-infused control segments in the same sheep. These microvascular density changes were significantly attenuated by senicapoc treatment. The increases in vascular endothelial growth factor (VEGF) expression and endothelial cell proliferation in bleomycin-infused lung segments were significantly reduced in sheep treated with the senicapoc, when compared to vehicle-treated controls. These parameters were not significantly suppressed with pirfenidone treatment. Senicapoc treatment attenuated vascular remodelling through inhibition of capillary endothelial cell proliferation and VEGF expression. These findings suggest a potential new mode of action for the novel drug senicapoc which may contribute to its efficacy in combatting pulmonary fibrosis.


Assuntos
Bleomicina/efeitos adversos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Pulmão/irrigação sanguínea , Fibrose Pulmonar/metabolismo , Remodelação Vascular/efeitos dos fármacos , Acetamidas/farmacologia , Animais , Bleomicina/farmacologia , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/antagonistas & inibidores , Pulmão/patologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/patologia , Ovinos , Compostos de Tritil/farmacologia , Fator A de Crescimento do Endotélio Vascular/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA