Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34556574

RESUMO

Existing tactile stimulation technologies powered by small actuators offer low-resolution stimuli compared to the enormous mechanoreceptor density of human skin. Arrays of soft pneumatic actuators initially show promise as small-resolution (1- to 3-mm diameter), highly conformable tactile display strategies yet ultimately fail because of their need for valves bulkier than the actuators themselves. In this paper, we demonstrate an array of individually addressable, soft fluidic actuators that operate without electromechanical valves. We achieve this by using microscale combustion and localized thermal flame quenching. Precisely, liquid metal electrodes produce sparks to ignite fuel lean methane-oxygen mixtures in a 5-mm diameter, 2-mm tall silicone cylinder. The exothermic reaction quickly pressurizes the cylinder, displacing a silicone membrane up to 6 mm in under 1 ms. This device has an estimated free-inflation instantaneous stroke power of 3 W. The maximum reported operational frequency of these cylinders is 1.2 kHz with average displacements of ∼100 µm. We demonstrate that, at these small scales, the wall-quenching flame behavior also allows operation of a 3 × 3 array of 3-mm diameter cylinders with 4-mm pitch. Though we primarily present our device as a tactile display technology, it is a platform microactuator technology with application beyond this one.

2.
Proc Natl Acad Sci U S A ; 117(10): 5217-5221, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32094198

RESUMO

This work addresses the challenge of underactuated pattern generation in continuous multistable structures. The examined configuration is a slender membrane which can concurrently sustain two different equilibria states, separated by transition regions, and is actuated by a viscous fluid. We first demonstrate the formation and motion of a single transition region and then sequencing of several such moving transition regions to achieve arbitrary patterns by controlling the inlet pressure of the actuating fluid. Finally, we show that nonuniform membrane properties, along with transient dynamics of the fluid, can be leveraged to directly snap through any segment of the membrane.

3.
Adv Mater ; 35(35): e2301483, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37269148

RESUMO

The thermodynamic properties of fluids play a crucial role in many engineering applications, particularly in the context of energy. Fluids with multistable thermodynamic properties may offer new paths for harvesting and storing energy via transitions between equilibria states. Such artificial multistable fluids can be created using the approach employed in metamaterials, which controls macro-properties through micro-structure composition. In this work, the dynamics of such "metafluids" is examined for a configuration of calorically-perfect compressible gas contained within multistable elastic capsules flowing in a fluid-filled tube. The velocity-, pressure-, and temperature-fields of multistable compressible metafluids is studied by both analytically and experimentally, focusing on transitions between different equilibria. The dynamics of a single capsule is first examine, which may move or change equilibrium state, due to fluidic forces. The interaction and motion of multiple capsules within a fluid-filled tube is then studied. It shows that such a system can be used to harvest energy from external temperature variations in either time or space. Thus, fluidic multistability allows specific quanta of energy to be captured and stored indefinitely as well as transported as a fluid, via tubes, at standard atmospheric conditions without the need for thermal isolation.

4.
Science ; 381(6663): 1212-1217, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37708265

RESUMO

Insects perform feats of strength and endurance that belie their small stature. Insect-scale robots-although subject to the same scaling laws-demonstrate reduced performance because existing microactuator technologies are driven by low-energy density power sources and produce small forces and/or displacements. The use of high-energy density chemical fuels to power small, soft actuators represents a possible solution. We demonstrate a 325-milligram soft combustion microactuator that can achieve displacements of 140%, operate at frequencies >100 hertz, and generate forces >9.5 newtons. With these actuators, we powered an insect-scale quadrupedal robot, which demonstrated a variety of gait patterns, directional control, and a payload capacity 22 times its body weight. These features enabled locomotion through uneven terrain and over obstacles.

5.
Nat Commun ; 13(1): 1810, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383165

RESUMO

Investigating and tailoring the thermodynamic properties of different fluids is crucial to many fields. For example, the efficiency, operation range, and environmental safety of applications in energy and refrigeration cycles are highly affected by the properties of the respective available fluids. Here, we suggest combining gas, liquid and multistable elastic capsules to create an artificial fluid with a multitude of stable states. We study, theoretically and experimentally, the suspension's internal energy, equilibrium pressure-density relations, and their stability for both adiabatic and isothermal processes. We show that the elastic multistability of the capsules endows the fluid with multistable thermodynamic properties, including the ability of capturing and storing energy at standard atmospheric conditions, not found in naturally available fluids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA