Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Soft Matter ; 15(21): 4255-4265, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31020308

RESUMO

We explore the force generation and surface interactions arising when electric fields are applied across fluid films. Using a surface force balance (SFB) we measure directly the force between two electrodes in crossed-cylinder geometry across dielectric and electrolytic fluids. In the case of dielectric films the field between the electrodes exerts a force which can be well explained using classic expressions and with no fitting parameters. However when the electrodes are separated by a film of electrolyte, an alternating electric field induces a force which diverges substantially from the calculated static response of the electrolyte. The magnitude of the force is larger than predicted, and the interaction can switch from attractive to repulsive. Furthermore, the approach to steady state in electrolyte takes place over 102-103 s which is very slow compared to both the charging and viscous timescales of the system. The non-trivial electrolyte response in AC electric fields, measured here directly, is likely to underlie several recent reports of unexpected and bifurcating forces driving colloids in AC fields. Our measurements suggest ways to control colloidal and soft matter using electric fields, as well as providing a direct measure of the length- and time-scales relevant in AC electrochemical and electrokinetic systems.

2.
Soft Matter ; 15(24): 4905-4914, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31166360

RESUMO

Using a surface force apparatus, a cholesteric liquid crystal was confined between two crossed cylindrical surfaces that induced strong planar anchoring and normal alignment of the chiral helix. The film thickness and total twist angle of the chiral molecular structure were simultaneously measured using multiple-beam optical interference. As the film thickness was increased and the chiral structure deformed, the twist angle remained almost unchanged until discontinuous changes occurred at critical distances that were equally spaced by one cholesteric half-pitch length. Structural deformations generated oscillatory elastic forces with periodically spaced maxima corresponding to twist transitions. These findings were reproduced using an equilibrium model of cholesteric confinement and force generation. The analysis indicates that the strength of the azimuthal surface anchoring on mica is high, exceeding 0.2 mJ m-2.


Assuntos
Cristais Líquidos/química , Desenho de Equipamento , Fenômenos Mecânicos
3.
Ultramicroscopy ; 266: 114024, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39186919

RESUMO

Genetic algorithm (GA) and particle swarm optimisation (PSO) techniques have been integrated with the differential algebra (DA) method in charged particle optics to optimise an Einzel lens. The DA method is a robust and efficient tool for the calculation of aberration coefficients of electrostatic lenses, which makes use of nonstandard analysis for ray tracing a particle as it is subjected to the field generated by a lens. In this study, initial populations of lenses with random geometrical configurations are generated. These initial populations are then subjected to GA and PSO algorithms to alter the geometry of each lens for a set number of iterations. The lens performance is evaluated by calculating the spot size using the aberrations coefficients up to third-order generated by the DA method. Moreover, a focusing column comprising two lenses and a Wien filter was optimised using GA method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA