Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 39(4)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29210493

RESUMO

Silicone elastomers have broad versatility within a variety of potential advanced materials applications, such as soft robotics, biomedical devices, and metamaterials. A series of custom 3D printable silicone inks with tunable stiffness is developed, formulated, and characterized. The silicone inks exhibit excellent rheological behavior for 3D printing, as observed from the printing of porous structures with controlled architectures. Herein, the capability to tune the stiffness of printable silicone materials via careful control over the chemistry, network formation, and crosslink density of the ink formulations in order to overcome the challenging interplay between ink development, post-processing, material properties, and performance is demonstrated.


Assuntos
Materiais Biocompatíveis/química , Elastômeros/química , Silicones/química , Materiais Biocompatíveis/síntese química , Elastômeros/síntese química , Tinta , Porosidade , Impressão Tridimensional , Reologia , Silicones/síntese química
2.
Artigo em Inglês | MEDLINE | ID: mdl-39226372

RESUMO

In this report, we describe the incorporation of single-walled carbon nanotubes (CNTs) into 3D printable siloxane elastomers for electrostatic dissipation. The composite was characterized, focusing on how rheological and mechanical properties of the siloxane are affected at various CNT loading levels. Electrical properties were also characterized to develop materials with effective electrostatic dissipation. We demonstrate that low loadings (<1 wt %) of CNTs can be sufficiently dispersed into silicone resins that can be 3D printed, and the resulting material shows a significant improvement in electrostatic dissipation through the reduction in electrical resistivity with minimal effect on its mechanical properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA