Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Neurol ; : e16499, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39498811

RESUMO

BACKGROUND AND PURPOSE: Parkinson disease (PD) is a complex and heterogeneous neurodegenerative disorder with a broad spectrum of clinical manifestations, determined by a complex interplay of environmental and genetic factors. This study aimed to investigate genetic variants associated with PD and assess their impact on the disease phenotype through genotype-phenotype correlations. METHODS: We employed a targeted resequencing panel to analyze 27 genes linked to PD in a cohort of 1185 PD patients from southern Spain. Variants were categorized based on the American College of Medical Genetics and Genomics pathogenicity criteria. Demographic and clinical data were also collected. RESULTS: Among the patients analyzed, 13.5% carried potential disease-causing pathogenic or likely pathogenic variants in 12 different genes, indicating significant genetic heterogeneity. The most frequently affected genes were LRRK2, PRKN, and GBA1 (accounting for 72.1% of positive cases). Sex-specific differences were observed, with a higher proportion of female patients carrying LRRK2 variants. Differences in age at onset and clinical features were also observed among the different mutated genes. Notably, variants in genes associated with atypical parkinsonism presented distinct clinical presentations, highlighting the importance of genetic factors in the differential diagnosis. CONCLUSIONS: Our study provides valuable information on the genetic landscape of PD and its clinical manifestations. The observed genotype-phenotype correlations, along with sex-specific differences, emphasize the complexity of PD pathogenesis, underlining the importance of personalized approaches to PD diagnosis and treatment. Further investigations into genetic interactions and population-specific effects are warranted to enhance our understanding of PD etiology and improve patient care.

2.
Ann Neurol ; 92(5): 715-724, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35913124

RESUMO

Parkinson's disease (PD) is a complex neurodegenerative condition in which genetic and environmental factors interact to contribute to its etiology. Remarkable progress has been made in deciphering disease etiology through genetic approaches, but there is limited data about how environmental and genetic factors interact to modify penetrance, risk, and disease severity. Here, we provide insights into environmental modifiers of PD, discussing precedents from other neurological and non-neurological conditions. Based on these examples, we outline genetic and environmental factors contributing to PD and review potential environmental modifiers of penetrance and clinical variability in monogenic and idiopathic PD. We also highlight the potential challenges and propose how future studies might tackle these important questions. ANN NEUROL 2022;92:715-724.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/epidemiologia , Doença de Parkinson/genética , Penetrância
3.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674414

RESUMO

Mosaic loss of chromosome Y (mLOY) is a common ageing-related somatic event and has been previously associated with Alzheimer's disease (AD). However, mLOY estimation from genotype microarray data only reflects the mLOY degree of subjects at the moment of DNA sampling. Therefore, mLOY phenotype associations with AD can be severely age-confounded in the context of genome-wide association studies. Here, we applied Mendelian randomisation to construct an age-independent mLOY polygenic risk score (mloy-PRS) using 114 autosomal variants. The mloy-PRS instrument was associated with an 80% increase in mLOY risk per standard deviation unit (p = 4.22 × 10-20) and was orthogonal with age. We found that a higher genetic risk for mLOY was associated with faster progression to AD in men with mild cognitive impairment (hazard ratio (HR) = 1.23, p = 0.01). Importantly, mloy-PRS had no effect on AD conversion or risk in the female group, suggesting that these associations are caused by the inherent loss of the Y chromosome. Additionally, the blood mLOY phenotype in men was associated with increased cerebrospinal fluid levels of total tau and phosphorylated tau181 in subjects with mild cognitive impairment and dementia. Our results strongly suggest that mLOY is involved in AD pathogenesis.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Masculino , Feminino , Doença de Alzheimer/genética , Cromossomos Humanos Y/genética , Estudo de Associação Genômica Ampla , Mosaicismo , Fatores de Risco , Disfunção Cognitiva/genética , Proteínas tau/genética , Biomarcadores , Peptídeos beta-Amiloides/genética
4.
Mov Disord ; 37(9): 1841-1849, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35852957

RESUMO

BACKGROUND: Previous studies suggest a link between CAG repeat number in the HTT gene and non-Huntington neurodegenerative diseases. OBJECTIVE: The aim is to analyze whether expanded HTT CAG alleles and/or their size are associated with the risk for developing α-synucleinopathies or their behavior as modulators of the phenotype. METHODS: We genotyped the HTT gene CAG repeat number and APOE-Ɛ isoforms in a case-control series including patients with either clinical or neuropathological diagnosis of α-synucleinopathy. RESULTS: We identified three Parkinson's disease (PD) patients (0.30%) and two healthy controls (0.19%) carrying low-penetrance HTT repeat expansions whereas none of the dementia with Lewy bodies (DLB) or multisystem atrophy (MSA) patients carried pathogenic HTT expansions. In addition, a clear increase in the number of HTT CAG repeats was found among DLB and PD groups influenced by the male gender and also by the APOE4 allele among DLB patients. HTT intermediate alleles' (IAs) distribution frequency increased in the MSA group compared with controls (8.8% vs. 3.9%, respectively). These differences were indeed statistically significant in the MSA group with neuropathological confirmation. Two MSA HTT CAG IAs carriers with 32 HTT CAG repeats showed isolated polyQ inclusions in pons and basal nuclei, which are two critical structures in the neurodegeneration of MSA. CONCLUSIONS: Our results point to a link between HTT CAG number, HTT IAs, and expanded HTT CAG repeats with other non-HD brain pathology and support the hypothesis that they can share common neurodegenerative pathways. © 2022 International Parkinson and Movement Disorder Society.


Assuntos
Proteína Huntingtina , Doença de Huntington , Atrofia de Múltiplos Sistemas , Doença de Parkinson , Sinucleinopatias , Alelos , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Masculino , Atrofia de Múltiplos Sistemas/genética , Doença de Parkinson/genética , Expansão das Repetições de Trinucleotídeos/genética
5.
Mov Disord ; 36(1): 118-123, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32914893

RESUMO

BACKGROUND: Cognitive impairment is one of the most disabling nonmotor symptoms in Parkinson's disease (PD). Recently, a genome-wide association study in Alzheimer's disease has identified the PICALM rs3851179 polymorphism as one of the most significant susceptibility genes for Alzheimer's disease after APOE. The aim of this study was to determine the potential role of PICALM and its genetic interaction with APOE in the development of cognitive decline in PD. METHODS: A discovery cohort of 712 patients with PD were genotyped for PICALM (rs3851179) and APOE (rs429358 and rs7412) polymorphisms. The association of PICALM and APOE-PICALM genetic interaction with cognitive dysfunction in PD was studied using logistic regression models, and the relationship of PICALM with cognitive decline onset was assessed with Cox regression analysis. PICALM effect was then replicated in an international, independent cohort (Parkinson's Progression Markers Initiative, N = 231). RESULTS: PICALM rs3851179 TT genotype was significantly associated with a decreased risk of cognitive impairment in PD (TT vs. CC + CT, P = 0.041, odds ratio = 0.309). Replication studies further demonstrated its protective effect on cognitive impairment in PD. In addition, the protective effect of the PICALM rs3851179 TT genotype was more pronounced in the APOE ε4 (-) carriers from the discovery cohort (P = 0.037, odds ratio = 0.241), although these results were not replicated in the Parkinson's Progression Markers Initiative cohort. CONCLUSIONS: Our results support the fact that PICALM is associated with cognitive impairment in PD. The understanding of its contribution to cognitive decline in PD could provide new targets for the development of novel therapies. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Proteínas Monoméricas de Montagem de Clatrina , Doença de Parkinson , Disfunção Cognitiva/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Proteínas Monoméricas de Montagem de Clatrina/genética , Doença de Parkinson/complicações , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único/genética
6.
Eur J Neurol ; 28(4): 1188-1197, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33175450

RESUMO

OBJECTIVE: We aimed to investigate the prevalence of TOR1A, GNAL and THAP1 variants as the cause of dystonia in a cohort of Spanish patients with isolated dystonia and in the literature. METHODS: A population of 2028 subjects (including 1053 patients with different subtypes of isolated dystonia and 975 healthy controls) from southern and central Spain was included. The genes TOR1A, THAP1 and GNAL were screened using a combination of high-resolution melting analysis and direct DNA resequencing. In addition, an extensive literature search to identify original articles (published before 10 August 2020) reporting mutations in TOR1A, THAP1 or GNAL associated to dystonia was performed. RESULTS: Pathogenic or likely pathogenic variants in TOR1A, THAP1 and GNAL were identified in 0.48%, 0.57% and 0.29% of our patients, respectively. Five patients carried the variation p.Glu303del in TOR1A. A very rare variant in GNAL (p.Ser238Asn) was found as a putative risk factor for dystonia. In the literature, variations in TOR1A, THAP1 and GNAL accounted for about 6%, 1.8% and 1.1% of published dystonia patients, respectively. CONCLUSIONS: There is a different genetic contribution to dystonia of these three genes in our patients (about 1.3% of patients) and in the literature (about 3.6% of patients), probably due the high proportion of adult-onset cases in our cohort. As regards age at onset, site of dystonia onset, and final distribution, in our population there is a clear differentiation between DYT-TOR1A and DYT-GNAL, with DYT-THAP1 likely to be an intermediate phenotype.


Assuntos
Distonia , Distúrbios Distônicos , Adulto , Proteínas Reguladoras de Apoptose/genética , Proteínas de Ligação a DNA/genética , Distonia/epidemiologia , Distonia/genética , Distúrbios Distônicos/epidemiologia , Distúrbios Distônicos/genética , Humanos , Chaperonas Moleculares/genética , Mutação , Espanha/epidemiologia
7.
Mov Disord ; 35(11): 2056-2067, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32864809

RESUMO

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative disease with an often complex component identifiable by genome-wide association studies. The most recent large-scale PD genome-wide association studies have identified more than 90 independent risk variants for PD risk and progression across more than 80 genomic regions. One major challenge in current genomics is the identification of the causal gene(s) and variant(s) at each genome-wide association study locus. The objective of the current study was to create a tool that would display data for relevant PD risk loci and provide guidance with the prioritization of causal genes and potential mechanisms at each locus. METHODS: We included all significant genome-wide signals from multiple recent PD genome-wide association studies including themost recent PD risk genome-wide association study, age-at-onset genome-wide association study, progression genome-wide association study, and Asian population PD risk genome-wide association study. We gathered data for all genes 1 Mb up and downstream of each variant to allow users to assess which gene(s) are most associated with the variant of interest based on a set of self-ranked criteria. Multiple databases were queried for each gene to collect additional causal data. RESULTS: We created a PD genome-wide association study browser tool (https://pdgenetics.shinyapps.io/GWASBrowser/) to assist the PD research community with the prioritization of genes for follow-up functional studies to identify potential therapeutic targets. CONCLUSIONS: Our PD genome-wide association study browser tool provides users with a useful method of identifying potential causal genes at all known PD risk loci from large-scale PD genome-wide association studies. We plan to update this tool with new relevant data as sample sizes increase and new PD risk loci are discovered. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by US Government employees and their work is in the public domain in the USA.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Idade de Início , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Doença de Parkinson/genética , Fatores de Risco
14.
NPJ Parkinsons Dis ; 10(1): 66, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503768

RESUMO

Recruitment is a major rate-limiting factor in Parkinson's disease (PD) research. AccessPD is a unique platform that aims to create a registry of more than 2000 PD patients and a rich database of PD-relevant information. Potential participants are identified using electronic health records (EHRs) in primary care. They are contacted via text message with an individualized link to the study portal. Electronic patient-reported outcomes (ePRO) are collected via online questionnaires and integrated with existing EHR. 200 participants were recruited within the first 6 months, of which 191 answered the follow-up questionnaire. Here, to showcase the potential of AccessPD, we described the most common diagnoses before and after PD diagnosis, the most commonly prescribed drugs, and identified participants who could benefit from device-aided therapies using consensus criteria. AccessPD shows its unique ability to link different data sources for patient stratification in longitudinal studies and recruitment into clinical trials.

15.
Parkinsonism Relat Disord ; 124: 106989, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38754220

RESUMO

The ATP10B gene has been proposed to play an important role in the development of early-onset Parkinson's disease (PD). Nevertheless, various studies have presented controversial conclusions regarding the involvement of this gene in PD. Here, we screened 1162 patients with PD, employing a targeted resequencing approach to investigate the putative relevance of this gene in a large independent cohort of these patients from southern Spain. Variations were classified according to the American College of Medical Genetics and Genomics criteria. Association studies were performed using data of a representative healthy Spanish population from the Medical Genome Project. Frequent variants were excluded. A total of 68 variants (rare or very rare) were detected in our cohort. Among ATP10B variant carriers, 12.9 % were putative compound heterozygous carriers; of these, 25 % were patients with early-onset PD. No evidence of a relation between any rare variants of ATP10B and PD risk was observed. Therefore, our results do not support a role for ATP10B in the onset of PD, or in the risk of developing it.


Assuntos
Doença de Parkinson , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos de Coortes , Predisposição Genética para Doença , Doença de Parkinson/genética , Espanha/epidemiologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo
16.
Lancet Neurol ; 23(6): 603-614, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38614108

RESUMO

BACKGROUND: Parkinson's disease is a progressive neurodegenerative disorder with multifactorial causes, among which genetic risk factors play a part. The RAB GTPases are regulators and substrates of LRRK2, and variants in the LRRK2 gene are important risk factors for Parkinson's disease. We aimed to explore genetic variability in RAB GTPases within cases of familial Parkinson's disease. METHODS: We did whole-exome sequencing in probands from families in Canada and Tunisia with Parkinson's disease without a genetic cause, who were recruited from the Centre for Applied Neurogenetics (Vancouver, BC, Canada), an international consortium that includes people with Parkinson's disease from 36 sites in 24 countries. 61 RAB GTPases were genetically screened, and candidate variants were genotyped in relatives of the probands to assess disease segregation by linkage analysis. Genotyping was also done to assess variant frequencies in individuals with idiopathic Parkinson's disease and controls, matched for age and sex, who were also from the Centre for Applied Neurogenetics but unrelated to the probands or each other. All participants were aged 18 years or older. The sequencing and genotyping findings were validated by case-control association analyses using bioinformatic data obtained from publicly available clinicogenomic databases (AMP-PD, GP2, and 100 000 Genomes Project) and a private German clinical diagnostic database (University of Tübingen). Clinical and pathological findings were summarised and haplotypes were determined. In-vitro studies were done to investigate protein interactions and enzyme activities. FINDINGS: Between June 1, 2010, and May 31, 2017, 130 probands from Canada and Tunisia (47 [36%] female and 83 [64%] male; mean age 72·7 years [SD 11·7; range 38-96]; 109 White European ancestry, 18 north African, two east Asian, and one Hispanic] underwent whole-exome sequencing. 15 variants in RAB GTPase genes were identified, of which the RAB32 variant c.213C>G (Ser71Arg) cosegregated with autosomal dominant Parkinson's disease in three families (nine affected individuals; non-parametric linkage Z score=1·95; p=0·03). 2604 unrelated individuals with Parkinson's disease and 344 matched controls were additionally genotyped, and five more people originating from five countries (Canada, Italy, Poland, Turkey, and Tunisia) were identified with the RAB32 variant. From the database searches, in which 6043 individuals with Parkinson's disease and 62 549 controls were included, another eight individuals were identified with the RAB32 variant from four countries (Canada, Germany, UK, and USA). Overall, the association of RAB32 c.213C>G (Ser71Arg) with Parkinson's disease was significant (odds ratio [OR] 13·17, 95% CI 2·15-87·23; p=0·0055; I2=99·96%). In the people who had the variant, Parkinson's disease presented at age 54·6 years (SD 12·75, range 31-81, n=16), and two-thirds had a family history of parkinsonism. RAB32 Ser71Arg heterozygotes shared a common haplotype, although penetrance was incomplete. Findings in one individual at autopsy showed sparse neurofibrillary tangle pathology in the midbrain and thalamus, without Lewy body pathology. In functional studies, RAB32 Arg71 activated LRRK2 kinase to a level greater than RAB32 Ser71. INTERPRETATION: RAB32 Ser71Arg is a novel genetic risk factor for Parkinson's disease, with reduced penetrance. The variant was found in individuals with Parkinson's disease from multiple ethnic groups, with the same haplotype. In-vitro assays show that RAB32 Arg71 activates LRRK2 kinase, which indicates that genetically distinct causes of familial parkinsonism share the same mechanism. The discovery of RAB32 Ser71Arg also suggests several genetically inherited causes of Parkinson's disease originated to control intracellular immunity. This shared aetiology should be considered in future translational research, while the global epidemiology of RAB32 Ser71Arg needs to be assessed to inform genetic counselling. FUNDING: National Institutes of Health, the Canada Excellence Research Chairs program, Aligning Science Across Parkinson's, the Michael J Fox Foundation for Parkinson's Research, and the UK Medical Research Council.


Assuntos
Doença de Parkinson , Proteínas rab de Ligação ao GTP , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Canadá/epidemiologia , Estudos de Casos e Controles , Sequenciamento do Exoma , Ligação Genética/genética , Predisposição Genética para Doença/genética , Genótipo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doença de Parkinson/genética , Proteínas rab de Ligação ao GTP/genética , Tunísia
17.
Neuron ; 112(13): 2142-2156.e5, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701790

RESUMO

Multiple system atrophy (MSA) is an adult-onset, sporadic synucleinopathy characterized by parkinsonism, cerebellar ataxia, and dysautonomia. The genetic architecture of MSA is poorly understood, and treatments are limited to supportive measures. Here, we performed a comprehensive analysis of whole genome sequence data from 888 European-ancestry MSA cases and 7,128 controls to systematically investigate the genetic underpinnings of this understudied neurodegenerative disease. We identified four significantly associated risk loci using a genome-wide association study approach. Transcriptome-wide association analyses prioritized USP38-DT, KCTD7, and lnc-KCTD7-2 as novel susceptibility genes for MSA within these loci, and single-nucleus RNA sequence analysis found that the associated variants acted as cis-expression quantitative trait loci for multiple genes across neuronal and glial cell types. In conclusion, this study highlights the role of genetic determinants in the pathogenesis of MSA, and the publicly available data from this study represent a valuable resource for investigating synucleinopathies.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Atrofia de Múltiplos Sistemas , Atrofia de Múltiplos Sistemas/genética , Humanos , Predisposição Genética para Doença/genética , Feminino , Masculino , Idoso , Locos de Características Quantitativas/genética , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
18.
J Neurol ; 270(1): 477-485, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36169739

RESUMO

BACKGROUND: Hyperhomocysteinemia is considered an independent risk factor for cognitive impairment. OBJECTIVE: To study the correlation between homocysteine levels and cognitive impairment in patients with PD. METHODS: We conducted a case-control study that included 246 patients with PD, of whom 32 were cognitively impaired. The levels of homocysteine, folate, and vitamin B12 were measured in peripheral blood. Multivariate logistic regression analysis was applied to determine differences in homocysteine levels between PD patients with and without cognitive impairment. A meta-analysis was performed to clarify the role of Hcy levels in PD with cognitive decline. Five polymorphisms in genes involved in Hcy metabolism, including MTHFR rs1801133 and rs1801131, COMT rs4680, MTRR rs1801394, and TCN2 rs1801198, were genotyped. RESULTS: Our case-control study showed that homocysteine levels were associated with cognitive impairment in PD after adjusting for possible confounding factors such as levodopa equivalent daily dose. The results of our meta-analysis further supported the positive association between homocysteine levels and cognition in PD. We found that the MTHFR rs1801133 TT genotype led to higher homocysteine levels in PD patients, whereas the MTHFR rs1801131 CC genotype resulted in higher folate levels. However, the polymorphisms studied were not associated with cognitive impairment in PD. CONCLUSIONS: Increased homocysteine levels were a risk factor for cognitive decline in PD. However, no association was found between polymorphisms in genes involved in homocysteine metabolism and cognitive impairment in PD. Large-scale studies of ethnically diverse populations are required to definitively assess the relationship between MTHFR and cognitive impairment in PD.


Assuntos
Disfunção Cognitiva , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/epidemiologia , Doença de Parkinson/genética , Estudos de Casos e Controles , Vitamina B 12 , Ácido Fólico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/genética , Genótipo , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Patrimônio Genético , Homocisteína
19.
NPJ Parkinsons Dis ; 9(1): 12, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36720879

RESUMO

Peripheral inflammatory immune responses are thought to play a major role in the pathogenesis of Parkinson's disease (PD). The neutrophil-to-lymphocyte ratio (NLR), a biomarker of systemic inflammation, has been reported to be higher in patients with PD than in healthy controls (HCs). The present study was aimed at determining if the peripheral inflammatory immune response could be influenced by the genetic background of patients with PD. We included a discovery cohort with 222 patients with PD (132 sporadic PD, 44 LRRK2-associated PD (with p.G2019S and p.R1441G variants), and 46 GBA-associated PD), as well as 299 HCs. Demographic and clinical data were recorded. Leukocytes and their subpopulations, and the NLR were measured in peripheral blood. Multivariate lineal regression and post-hoc tests were applied to determine the differences among the groups. Subsequently, a replication study using the Parkinson's Progression Markers Initiative cohort was performed which included 401 patients with PD (281 sPD patients, 66 LRRK2-PD patients, 54 GBA-PD patients) and a group of 174 HCs. Patients with sporadic PD and GBA-associated PD showed a significantly lower lymphocyte count, a non-significantly higher neutrophil count and a significantly higher NLR than HCs. The peripheral inflammatory immune response of patients with LRRK2-associated PD did not differ from HCs. Our study supports the involvement of a peripheral inflammatory immune response in the pathophysiology of sPD and GBA-associated PD. However, this inflammatory response was not found in LRRK2-associated PD, probably reflecting different pathogenic inflammatory mechanisms.

20.
medRxiv ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38076954

RESUMO

Objective: This study aims to address disparities in risk prediction by evaluating the performance of polygenic risk score (PRS) models using the 90 risk variants across 78 independent loci previously linked to Parkinson's disease (PD) risk across seven diverse ancestry populations. Methods: We conducted a multi-stage study, testing PRS models in predicting PD status across seven different ancestries applying three approaches: 1) PRS adjusted by gender and age; 2) PRS adjusted by gender, age and principal components (PCs); and 3) PRS adjusted by gender, age and percentage of population admixture. These models were built using the largest four population-specific summary statistics of PD risk to date (base data) and individual level data obtained from the Global Parkinson's Genetics Program (target data). We performed power calculations to estimate the minimum sample size required to conduct these analyses. A total of 91 PRS models were developed to investigate cumulative known genetic variation associated with PD risk and age of onset in a global context. Results: We observed marked heterogeneity in risk estimates across non-European ancestries, including East Asians, Central Asians, Latino/Admixed Americans, Africans, African admixed, and Ashkenazi Jewish populations. Risk allele patterns for the 90 risk variants yielded significant differences in directionality, frequency, and magnitude of effect. PRS did not improve in performance when predicting disease status using similar base and target data across multiple ancestries, demonstrating that cumulative PRS models based on current known risk are inherently biased towards European populations. We found that PRS models adjusted by percentage of admixture outperformed models that adjusted for conventional PCs in highly admixed populations. Overall, the clinical utility of our models in individually predicting PD status is limited in concordance with the estimates observed in European populations. Interpretation: This study represents the first comprehensive assessment of how PRS models predict PD risk and age at onset in a multi-ancestry fashion. Given the heterogeneity and distinct genetic architecture of PD across different populations, our assessment emphasizes the need for larger and diverse study cohorts of individual-level target data and well-powered ancestry-specific summary statistics. Our current understanding of PD status unraveled through GWAS in European populations is not generally applicable to other ancestries. Future studies should integrate clinical and *omics level data to enhance the accuracy and predictive power of PRS across diverse populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA