Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 10(11): 4600-6, 2010 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-20977206

RESUMO

Atomic-resolution imaging of discrete [γ-SiW10O36]8- lacunary Keggin ions dispersed onto monolayer graphene oxide (GO) films by low voltage aberration corrected transmission electron microscopy is described. Under low electron beam dose, individual anions remain stationary for long enough that a variety of projections can be observed and structural information extracted with ca. ± 0.03 nm precision. Unambiguous assignment of the orientation of individual ions with respect to the point symmetry elements can be determined. The C2v symmetry [γ-SiW10O36]8- ion was imaged along its 2-fold C2 axis or orthogonally with respect to one of two nonequivalent mirror planes (i.e., σv). Continued electron beam exposure of a second ion imaged orthogonal to σv causes it to translate and/or rotate in an inhibited fashion so that the ion can be viewed in different relative orientations. The inhibited surface motion of the anion, which is in response to H-bonding-type interactions, reveals an important new property for GO in that it demonstrably behaves as a chemically modified (i.e., rather than chemically neutral) surface in electron microscopy. This behavior indicates that GO has more in common with substrates used in imaging techniques such as atomic force microscopy and scanning tunneling microscopy, and this clearly sets it apart from other support films used in transmission electron microscopy.


Assuntos
Grafite/química , Microscopia Eletrônica/métodos , Modelos Químicos , Modelos Moleculares , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Compostos de Tungstênio/química , Simulação por Computador , Íons , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Óxidos/química , Tamanho da Partícula , Rotação , Propriedades de Superfície
2.
ACS Nano ; 10(1): 796-802, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26714041

RESUMO

Monosubstituted lacunary Keggin [CoSiW11O39](6-) ions on graphene oxide (GO) were used in a comparative imaging study using aberration corrected transmission electron microscopy at two different acceleration voltages, 80 and 200 kV. By performing a set of static and dynamical studies, together with image simulations, we show how the use of lower voltages results in better stability and resolution of the underlying GO support while the use of higher voltages permits better resolution of the individual tungsten atoms and leads to less kinetic motion of the cluster, thus leading to a more accurate identification of cluster orientation and better stability under dynamical imaging conditions. Applying different voltages also influences the visibility of both GO and the lighter Co at lower or higher voltages, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA