Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(48): e2310522120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37983497

RESUMO

With the significant increase in the availability of microbial genome sequences in recent years, resistance gene-guided genome mining has emerged as a powerful approach for identifying natural products with specific bioactivities. Here, we present the use of this approach to reveal the roseopurpurins as potent inhibitors of cyclin-dependent kinases (CDKs), a class of cell cycle regulators implicated in multiple cancers. We identified a biosynthetic gene cluster (BGC) with a putative resistance gene with homology to human CDK2. Using targeted gene disruption and transcription factor overexpression in Aspergillus uvarum, and heterologous expression of the BGC in Aspergillus nidulans, we demonstrated that roseopurpurin C (1) is produced by this cluster and characterized its biosynthesis. We determined the potency, specificity, and mechanism of action of 1 as well as multiple intermediates and shunt products produced from the BGC. We show that 1 inhibits human CDK2 with a Kiapp of 44 nM, demonstrates selectivity for clinically relevant members of the CDK family, and induces G1 cell cycle arrest in HCT116 cells. Structural analysis of 1 complexed with CDK2 revealed the molecular basis of ATP-competitive inhibition.


Assuntos
Quinases Ciclina-Dependentes , Neoplasias , Humanos , Quinases Ciclina-Dependentes/metabolismo , Quinase 2 Dependente de Ciclina/genética , Ciclinas/metabolismo , Ciclo Celular/genética , Inibidores Enzimáticos
2.
Nat Chem Biol ; 19(5): 633-640, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36702957

RESUMO

Genome mining of biosynthetic pathways with no identifiable core enzymes can lead to discovery of the so-called unknown (biosynthetic route)-unknown (molecular structure) natural products. Here we focused on a conserved fungal biosynthetic pathway that lacks a canonical core enzyme and used heterologous expression to identify the associated natural product, a highly modified cyclo-arginine-tyrosine dipeptide. Biochemical characterization of the pathway led to identification of a new arginine-containing cyclodipeptide synthase (RCDPS), which was previously annotated as a hypothetical protein and has no sequence homology to non-ribosomal peptide synthetase or bacterial cyclodipeptide synthase. RCDPS homologs are widely encoded in fungal genomes; other members of this family can synthesize diverse cyclo-arginine-Xaa dipeptides, and characterization of a cyclo-arginine-tryptophan RCDPS showed that the enzyme is aminoacyl-tRNA dependent. Further characterization of the biosynthetic pathway led to discovery of new compounds whose structures would not have been predicted without knowledge of RCDPS function.


Assuntos
Produtos Biológicos , Dipeptídeos/genética , Bactérias/genética , Família Multigênica , Vias Biossintéticas/genética , Genoma Bacteriano
3.
J Am Chem Soc ; 145(12): 6643-6647, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36920241

RESUMO

The complete biosynthetic pathways of the potent antifungals AS2077715 (1) and funiculosin (2) are reconstituted and characterized. A five-enzyme cascade, including a multifunctional flavin-dependent monooxygenease and a repurposed O-methyltransferase, is involved to perform the dearomatization, stereoselective ring contraction, and redox transformations to morph a hydroxyphenyl-containing precursor into the unusual all-cis cyclopentanetetraol moiety.


Assuntos
Antifúngicos , Oxirredução
4.
Bull Entomol Res ; 112(6): 818-826, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35509257

RESUMO

Diabrotica speciosa is an important pest of several crops in South America, including soybeans. Adults cause severe defoliation in soybean plants, and damage is significant when cotyledons are attacked. This study evaluated feeding non-preference to D. speciosa adults using 10 soybean genotypes, testing (i) 15-day-old whole plants and (ii) leaf disks of 60-day-old plants, through assessments of soybean attractiveness and leaf area consumed (LAC). Foliar contents of flavonoids and nutrients, and leaf trichome density were quantified for potential correlations with soybean resistance to adult of D. speciosa. In the whole young-plant experiment, under free-choice conditions, the lowest LAC was observed in IAC 100 and PI 227687. In no-choice, PI 227687 and IGRA RA 626 RR showed lower LAC than the other genotypes. In the leaf disk test, in free-choice, the genotypes IAC 100, PI 274454, PI 227687, DM 339, and BR 16 were the least preferred by adult of D. speciosa. In no-choice, PI 274454 was one of the least preferred, similarly to IGRA RA 626 RR, Dowling, and PI 227687. In the whole plant experiment, a high rutin content and low amounts of zinc, calcium, sulfur and manganese were associated with less consumption of D. speciosa on leaves of resistant genotypes. In contrast, in the leaf disk test there was a significant influence of trichomes in soybean resistance to the pest. In conclusion, the PI lines herein assessed are also promising sources for developing cultivars resistant to D. speciosa.


Assuntos
Besouros , Preferências Alimentares , Glycine max , Animais , Genótipo , Fenótipo , Folhas de Planta/anatomia & histologia , Folhas de Planta/química , Glycine max/anatomia & histologia , Glycine max/química , Glycine max/genética , Preferências Alimentares/fisiologia
5.
J Am Chem Soc ; 143(16): 6043-6047, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33857369

RESUMO

Lanosterol 14α-demethylase (CYP51) is an important target in the development of antifungal drugs. The fungal-derived restricticin 1 and related molecules are the only examples of natural products that inhibit CYP51. Here, using colocalizations of genes encoding self-resistant CYP51 as the query, we identified and validated the biosynthetic gene cluster (BGC) of 1. Additional genome mining of related BGCs with CYP51 led to production of the related lanomycin 2. The pathways for both 1 and 2 were identified from fungi not known to produce these compounds, highlighting the promise of the self-resistance enzyme (SRE) guided approach to bioactive natural product discovery.


Assuntos
Inibidores de 14-alfa Desmetilase/metabolismo , Produtos Biológicos/metabolismo , Família 51 do Citocromo P450/genética , Antifúngicos/química , Antifúngicos/metabolismo , Produtos Biológicos/química , Família 51 do Citocromo P450/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/genética , Família Multigênica , Piranos/química , Piranos/metabolismo
6.
J Nat Prod ; 84(7): 2028-2034, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34191504

RESUMO

The genus Sphaerostilbella comprises fungi that colonize basidiomata of wood-inhabiting fungi, including important forest pathogens. Studies of fermentation cultures of an isolate (TFC201724) collected on the foothills of Himalayas, and closely related to S. broomeana isolates from Europe, led to the identification of a new cyclic octapeptide along with two closely related analogues (1-3) and four dioxopiperazines (4-7). The structure of the lead compound, broomeanamide A (1), was assigned mainly by analysis of 2D NMR and HRESIMS data. The structure consisted of one unit each of N-MeVal, Ala, N-MePhe, Pro, Val, and Ile and two N-MeLeu units. The amino acid sequence was determined on the basis of 2D NMR and HRESIMSMS data. NMR and HRMS data revealed that the other two new peptides have the same amino acid composition except that the Ile unit was replaced with Val in one instance (2) and the N-MeVal unit was replaced with Val in the other (3). The absolute configuration of 1 was assigned by analysis of the acid hydrolysate by application of Marfey's method using both C18 and C3 bonded-phase columns. Broomeanamide A (1) showed antifungal activity against Cryptococcus neoformans and Candida albicans, with MIC values of 8.0 and 64 µg/mL, respectively.


Assuntos
Antifúngicos/farmacologia , Hypocreales/química , Peptídeos Cíclicos/farmacologia , Sequência de Aminoácidos , Antifúngicos/isolamento & purificação , Candida albicans/efeitos dos fármacos , Cryptococcus neoformans/efeitos dos fármacos , Índia , Estrutura Molecular , Peptídeos Cíclicos/isolamento & purificação
7.
J Ind Microbiol Biotechnol ; 48(9-10)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33640980

RESUMO

Cryptococcus neoformans is a serious human pathogen with limited options for treatment. We have interrogated extracts from fungal fermentations to find Cryptococcus-inhibiting natural products using assays for growth inhibition and differential thermosensitivity. Extracts from fermentations of four fungal strains from wild and domestic animal dung from Arkansas and West Virginia, USA were identified as Preussia typharum. The extracts exhibited two antifungal regions. Purification of one region yielded new 24-carbon macrolides incorporating both a phosphoethanolamine unit and a bridging tetrahydrofuran ring. The structures of these metabolites were established mainly by analysis of high-resolution mass spectrometry and 2D NMR data. Relative configurations were assigned using NOESY data, and the structure assignments were supported by NMR comparison with similar compounds. These new metabolites are designated preussolides A and B. The second active region was caused by the cytotoxin, leptosin C. Genome sequencing of the four strains revealed biosynthetic gene clusters consistent with those known to encode phosphoethanolamine-bearing polyketide macrolides and the biosynthesis of dimeric epipolythiodioxopiperazines. All three compounds showed moderate to potent and selective antifungal activity toward the pathogenic yeast C. neoformans.


Assuntos
Cryptococcus neoformans , Macrolídeos , Animais , Antifúngicos/farmacologia , Ascomicetos , Etanolaminas , Humanos , Alcaloides Indólicos , Macrolídeos/farmacologia
8.
Environ Microbiol ; 22(6): 2292-2311, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32239586

RESUMO

The antifungal echinocandin lipopeptide, acrophiarin, was circumscribed in a patent in 1979. We confirmed that the producing strain NRRL 8095 is Penicillium arenicola and other strains of P. arenicola produced acrophiarin and acrophiarin analogues. Genome sequencing of NRRL 8095 identified the acrophiarin gene cluster. Penicillium arenicola and echinocandin-producing Aspergillus species belong to the family Aspergillaceae of the Eurotiomycetes, but several features of acrophiarin and its gene cluster suggest a closer relationship with echinocandins from Leotiomycete fungi. These features include hydroxy-glutamine in the peptide core instead of a serine or threonine residue, the inclusion of a non-heme iron, α-ketoglutarate-dependent oxygenase for hydroxylation of the C3 of the glutamine, and a thioesterase. In addition, P. arenicola bears similarity to Leotiomycete echinocandin-producing species because it exhibits self-resistance to exogenous echinocandins. Phylogenetic analysis of the genes of the echinocandin biosynthetic family indicated that most of the predicted proteins of acrophiarin gene cluster exhibited higher similarity to the predicted proteins of the pneumocandin gene cluster of the Leotiomycete Glarea lozoyensis than to those of the echinocandin B gene cluster from A. pachycristatus. The fellutamide gene cluster and related gene clusters are recognized as relatives of the echinocandins. Inclusion of the acrophiarin gene cluster into a comprehensive phylogenetic analysis of echinocandin gene clusters indicated the divergent evolutionary lineages of echinocandin gene clusters are descendants from a common ancestral progenitor. The minimal 10-gene cluster may have undergone multiple gene acquisitions or losses and possibly horizontal gene transfer after the ancestral separation of the two lineages.


Assuntos
Anti-Infecciosos/metabolismo , Ascomicetos , Aspergillus , Equinocandinas , Lipopeptídeos , Penicillium , Ascomicetos/genética , Aspergillus/genética , Equinocandinas/biossíntese , Equinocandinas/genética , Lipopeptídeos/biossíntese , Lipopeptídeos/genética , Família Multigênica , Penicillium/genética
9.
J Nat Prod ; 83(9): 2718-2726, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32881504

RESUMO

Campafungin A is a polyketide that was recognized in the Candida albicans fitness test due to its antiproliferative and antihyphal activity. Its mode of action was hypothesized to involve inhibition of a cAMP-dependent PKA pathway. The originally proposed structure appeared to require a polyketide assembled in a somewhat unusual fashion. However, structural characterization data were never formally published. This background stimulated a reinvestigation in which campafungin A and three closely related minor constituents were purified from fermentations of a strain of the ascomycete fungus Plenodomus enteroleucus. Labeling studies, along with extensive NMR analysis, enabled assignment of a revised structure consistent with conventional polyketide synthetic machinery. The structure elucidation of campafungin A and new analogues encountered in this study, designated here as campafungins B, C, and D, is presented, along with a proposed biosynthetic route. The antimicrobial spectrum was expanded to methicillin-resistant Staphylococcus aureus, Candida tropicalis, Candida glabrata, Cryptococcus neoformans, Aspergillus fumigatus, and Schizosaccharomyces pombe, with MICs ranging as low as 4-8 µg mL-1 in C. neoformans. Mode-of-action studies employing libraries of C. neoformans mutants indicated that multiple pathways were affected, but mutants in PKA/cAMP pathways were unaffected, indicating that the mode of action was distinct from that observed in C. albicans.


Assuntos
Candida albicans/efeitos dos fármacos , Cryptococcus neoformans/efeitos dos fármacos , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Ascomicetos/química , Ascomicetos/metabolismo , Bactérias/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/efeitos dos fármacos , Fermentação , Fungos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Policetídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos
10.
J Nat Prod ; 83(3): 668-674, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-31999116

RESUMO

During investigation of the secondary metabolism of four strains of Penicillium arenicola, two new depsides, arenicolins A (1) and B (2), were isolated and characterized. Their structures were established mainly by analysis of NMR and HRMS data and by comparison with known compounds. These depsides incorporate intriguing structural features, including dual alkyl side chains and a C-glycosyl unit, with 1 also containing an acylated 2-hydroxymethyl-4,5,6-trihydroxycyclohexenone moiety. Although the arenicolins were produced by all strains tested, arenicolin A (1) was obtained using only one of five medium compositions employed, while arenicolin B (2) was produced in all media tested. Neither compound showed antibacterial or antifungal activity, but 1 exhibited cytotoxicity toward mammalian cell lines, including colorectal carcinoma (HCT-116), neuroblastoma (IMR-32), and ductal carcinoma (BT-474), with IC50 values of 7.3, 6.0, and 9.7 µM, respectively.


Assuntos
Antineoplásicos/farmacologia , Depsídeos/farmacologia , Penicillium/química , Antineoplásicos/isolamento & purificação , Produtos Biológicos/química , Linhagem Celular Tumoral , Depsídeos/isolamento & purificação , Glicosilação , Humanos , Estrutura Molecular
11.
Molecules ; 25(4)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085602

RESUMO

Aspergillus pachycristatus is an industrially important fungus for the production of the antifungal echinocandin B and is closely related to model organism A. nidulans. Its secondary metabolism is largely unknown except for the production of echinocandin B and sterigmatocystin. We constructed mutants for three genes that regulate secondary metabolism in A. pachycristatus NRRL 11440, and evaluated the secondary metabolites produced by wild type and mutants strains. The secondary metabolism was explored by metabolic networking of UPLC-HRMS/MS data. The genes and metabolites of A. pachycristatus were compared to those of A. nidulans FGSC A4 as a reference to identify compounds and link them to their encoding genes. Major differences in chromatographic profiles were observable among the mutants. At least 28 molecules were identified in crude extracts that corresponded to nine characterized gene clusters. Moreover, metabolic networking revealed the presence of a yet unexplored array of secondary metabolites, including several undescribed fellutamides derivatives. Comparative reference to its sister species, A. nidulans, was an efficient way to dereplicate known compounds, whereas metabolic networking provided information that allowed prioritization of unknown compounds for further metabolic exploration. The mutation of global regulator genes proved to be a useful tool for expanding the expression of metabolic diversity in A. pachycristatus.


Assuntos
Aspergillus/genética , Aspergillus/metabolismo , Mineração de Dados , Genoma Fúngico , Metabolismo Secundário/genética , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Vias Biossintéticas/genética , Cromatografia Líquida de Alta Pressão , Redes e Vias Metabólicas/genética , Família Multigênica , Oligopeptídeos/farmacologia
12.
Planta Med ; 83(3-04): 312-317, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27599262

RESUMO

Indiscriminate use of synthetic pesticides can be hazardous to both humans and the environment, but the use of natural products as a source of bio-based products, such as Melia azedarach extracts, is an interesting approach to overcome these hazards. Unfortunately, the limonoids found in M. azedarach with desired insecticidal properties (e.g. azadirachtin) may also be present with limonoids toxic to mammals. The goal of this report was to develop a fast and reliable MS-based experiment to characterize meliatoxins in crude extracts of M. azedarach, in order to provide unequivocal assessment of the safety for extracts for application in the field. MS and MS/MS experiments using MALDI ionization were evaluated as tools for the assignment of characteristic ions produced by each meliatoxin in crude extracts.The use of different experiments in combination, such as the analysis of fragment m/z 557 and [M + Na]+ (adducts ions m/z 681 and m/z 667), MALDI-MS can be used for detection of meliatoxins A1/B1 or A2/B2 in a crude extract and may be used to discriminate meliatoxins A from B, respectively. Subsequent MS/MS experiments can distinguish between the presence of group 1 and/or 2 in each class of meliatoxins classifying the proposed approach as a quick and efficient quality control method of meliatoxins in real M. azedarach samples.


Assuntos
Limoninas/química , Melia azedarach/química , Extratos Vegetais/química , Frutas/química , Limoninas/análise , Limoninas/toxicidade , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/toxicidade , Controle de Qualidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/métodos
13.
Eur J Pharm Sci ; 165: 105939, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34284097

RESUMO

Forced degradation tests are studies used to assess the stability of active pharmaceutical ingredients (APIs) and their formulations. These tests are performed submitting the API under extreme conditions in order to know the main degradation products in a short period of time. The results of these studies are used to assess the degradation susceptibility of APIs and to validate chromatographic analytical methods. However, most of degradation studies are performed using one-factor-at-the-time (OFAT) which does not consider the interactions between degradation variables. This work proposes the use of Design of Experiment (DoE) approach in forced degradation of albendazole (ABZ). It was used a central composite design (CCD) to evaluate the forced degradation in a multivariate way. Experiments were performed taking into account the variables pH, temperature, oxidizing agent (H2O2) and UV radiation. It was verified the influence of the variables and their interactions on the ABZ degradation. The ABZ oxidation showed to be the main degradation route for ABZ, which is strongly influenced by the temperature. The hydrolysis was relevant at alkaline medium and high temperature. LC-IT-MSn was used to identify the degradation products. It was found three known degradation products (albendazole-2-amino, albendazole sulfoxide and albendazole sulfone) and a new derivate of albendazole molecule (albendazole sulfoxide with a chlorine). This last one was isolated and characterized by UPLC-QToF-MS and NMR analyses.


Assuntos
Anti-Helmínticos , Preparações Farmacêuticas , Albendazol , Cromatografia Líquida , Composição de Medicamentos , Peróxido de Hidrogênio
14.
Biomolecules ; 10(10)2020 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-32993102

RESUMO

Sphaerostilbella toxica is a mycoparasitic fungus that can be found parasitizing wood-decay basidiomycetes in the southern USA. Organic solvent extracts of fermented strains of S. toxica exhibited potent antimicrobial activity, including potent growth inhibition of human pathogenic yeasts Candida albicans and Cryptococcus neoformans, the respiratory pathogenic fungus Aspergillus fumigatus, and the Gram-positive bacterium Staphylococcus aureus. Bioassay-guided separations led to the purification and structure elucidation of new peptaibiotics designated as sphaerostilbellins A and B. Their structures were established mainly by analysis of NMR and HRMS data, verification of amino acid composition by Marfey's method, and by comparison with published data of known compounds. They incorporate intriguing structural features, including an N-terminal 2-methyl-3-oxo-tetradecanoyl (MOTDA) residue and a C-terminal putrescine residue. The minimal inhibitory concentrations for sphaerostilbellins A and B were measured as 2 µM each for C. neoformans, 1 µM each for A. fumigatus, and 4 and 2 µM, respectively, for C. albicans. Murine macrophage cells were unaffected at these concentrations.


Assuntos
Antibacterianos/química , Anti-Infecciosos/química , Antifúngicos/farmacologia , Basidiomycota/química , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antifúngicos/química , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/patogenicidade , Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , Cryptococcus neoformans/efeitos dos fármacos , Cryptococcus neoformans/patogenicidade , Humanos , Macrófagos/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Staphylococcus aureus/patogenicidade
15.
Front Microbiol ; 11: 1766, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849391

RESUMO

Cryptococcus neoformans is an important human pathogen with limited options for treatments. We have interrogated extracts from fungal fermentations to find Cryptococcus-inhibiting natural products using assays for growth inhibition, differential thermosensitivity, and synergy with existing antifungal drugs. Extracts from fermentations of strains of Discosia rubi from eastern Texas showed anticryptococcal bioactivity with preferential activity in agar zone of inhibition assays against C. neoformans at 37°C versus 25°C. Assay-guided fractionation led to the purification and identification of chaetoglobosin P as the active component of these extracts. Genome sequencing of these strains revealed a biosynthetic gene cluster consistent with chaetoglobosin biosynthesis and ß-methylation of the tryptophan residue. Proximity of genes of the actin-binding protein twinfilin-1 to the chaetoglobosin P and K gene clusters suggested a possible self-resistance mechanism involving twinfilin-1 which is consistent with the predicted mechanism of action involving interference with the polymerization of the capping process of filamentous actin. A C. neoformans mutant lacking twinfilin-1 was hypersensitive to chaetoglobosin P. Chaetoglobosins also potentiated the effects of amphotericin B and caspofungin on C. neoformans.

16.
RSC Adv ; 10(11): 6259-6270, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35495990

RESUMO

Metals capped with organochalcogenides have attracted considerable interest due to their practical applications, which include catalysis, sensing, and biosensing, due to their optical, magnetic, electrochemical, adhesive, lubrication, and antibacterial properties. There are numerous reports of metals capped with organothiol molecules; however, there are few studies on metals capped with organoselenium or organotellurium. Thus, there is a gap to be filled regarding the properties of organochalcogenide systems which can be improved by replacing sulfur with selenium or tellurium. In the last decade, there has been significant development in the synthesis of selenium and tellurium compounds; however, it is difficult to find commercial applications of these compounds because there are few studies showing the feasibility of their synthesis and their advantages compared to organothiol compounds. Stability against oxidation by molecular oxygen under ambient conditions is one of the properties which can be improved by choosing the correct organochalcogenide; this can confer important advantages for many more suitable applications. This paper reports the successful synthesis and characterization of gold nanoparticles functionalized with organochalcogenide molecules (dibutyl-disulfide, dibutyl-diselenide and dibutyl-ditelluride) and evaluates the oxidation stability of the organochalcogenides. Spherical gold nanoparticles with diameters of 24 nm were capped with organochalcogenides and were investigated using X-ray photoelectron spectroscopy (XPS) to show the improved stability of organoselenium compared with organothiol and organotellurium. The results suggest that the organoselenium is a promising candidate to replace organothiol because of its enhanced stability towards oxidation by molecular oxygen under ambient conditions and its slow oxidation rate. The observed difference in the oxidation processes, as discussed, is also in agreement with theoretical calculations.

17.
Bioresour Technol ; 148: 624-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24080442

RESUMO

Dioxins are a class of extremely hazardous molecules that might pose a threat to the environment. This work evaluated the microbial degradation of 1,2,3,4-tetrachlorodibenzo-p-dioxin (1,2,3,4-TCDD), in liquid broth using three brown-rot fungi and one white-rot fungi as control. A fast and reliable extraction method with recoveries of over 98% together with a validated GC-MS method was developed, and applied to quantify 1,2,3,4-TCDD in liquid broth, mycelia and reaction flask, with detection limits of 10 ppb. Among the four strains tested, brown-rot fungus Aspergillus aculeatus showed best results, removing up to 21% of dioxin after 30-day incubation. The results open both a path for biotechnological interest in bioremediation purposes and environmental behavior studies by using brown-rot fungus.


Assuntos
Basidiomycota/metabolismo , Meios de Cultura/metabolismo , Dibenzodioxinas Policloradas/análogos & derivados , Análise de Variância , Biodegradação Ambiental , Biomassa , Cromatografia Gasosa-Espectrometria de Massas , Modelos Lineares , Dibenzodioxinas Policloradas/química , Dibenzodioxinas Policloradas/metabolismo , Reprodutibilidade dos Testes
18.
Bioresour Technol ; 124: 37-44, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22985849

RESUMO

A novel analytical method using HPLC-MS/MS operating in selected reaction monitoring (SRM) for evaluation of fungi efficacy to decolorize Remazol Brilliant Blue R (RBBR) dye solution was developed, validated and applied. The method shows high sensibility allowing the detection of 4.6 pM of RBBR. Four fungal strains were tested in liquid medium, three strains of Aspergillus (Aspergillus aculeatus, Aspergillus flavus and Aspergillus fumigatus) and Phanerochaete chrysosporium. All fungi were able to degrade the dye, with efficiencies ranging from 40% for P. chrysosporium up to 99% for A. flavus during a 30-day incubation period. During the experiment, increased accumulation of degradation products was observed in A. flavus cultures containing RBBR. Through the use of full scan HPLC-MS technique it was possible to propose the biogenesis of the microbial metabolic degradation pathway. Screening using microorganisms and RBBR may be hereafter used to investigate microbial biodegradation of high toxicity molecules such as dioxins.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Cor , Fungos/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Biodegradação Ambiental , Fungos/classificação , Limite de Detecção , Reprodutibilidade dos Testes , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA