Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Chemistry ; : e202402293, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037002

RESUMO

A sustainable and scalable protocol for synthesizing variously functionalized sulfonamides, from amines and sulfonyl chlorides, has been developed using environmentally responsible and reusable choline chloride (ChCl)-based deep eutectic solvents (DESs). In ChCl/glycerol (1:2 mol mol-1) and ChCl/urea (1:2 mol mol-1), these reactions yield up to 97% under aerobic conditions at ambient temperature within 2-12 h. The practicality of the method is exemplified by the sustainable synthesis of an FFA4 agonist and a key building block en route to anti-Alzheimer drug BMS-299897. A subtle interplay of electronic effects and the solubility characteristics of the starting materials in the aforementioned DESs seem to be responsible for driving the reaction successfully over the hydrolysis of sulfonyl chlorides. The procedure's eco-friendliness is validated  by quantitative metrics like the E-factor and the EcoScale, with products isolated by extraction or filtration after decantation.

2.
Org Biomol Chem ; 22(9): 1885-1891, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38349132

RESUMO

A new scalable synthesis of (E)-α,ß-unsaturated esters has been developed using protic, non-toxic, and biodegradable deep eutectic solvents through the Horner-Wadsworth-Emmons reaction between triethyl phosphonates and (hetero)aromatic carbonyl compounds, encompassing electron-withdrawing and electron-donating groups. Stereoselective preparation of disubstituted or trisubstituted ethyl cinnamate derivatives is achieved in the presence of LiOH, K2CO3, or DBU as bases, at room temperature and under air. Demonstrated with the synthesis of (E)-ethyl 3-(4-bromophenyl)acrylate, the same eutectic mixture (choline chloride/urea) proved to be reusable for three consecutive runs. Gram-scale reactions (10 mmol) can be carried out without the formation of side products, thereby ensuring high atom economy and an EcoScale score of 71.

3.
Molecules ; 29(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543038

RESUMO

An enhanced, sustainable, and efficient method for synthesizing tacrine, achieving a 98% yield, has been developed by replacing volatile organic compounds with more eco-friendly solvents such as deep eutectic solvent (DESs). The optimized protocol scales easily to 3 g of substrate without yield loss and extends successfully to tacrine derivatives with reduced hepatotoxicity. Particularly notable is the synthesis of novel triazole-based derivatives, yielding 90-95%, by integrating an in situ preparation of aryl azides in DESs with N-propargyl-substituted tacrine derivatives. Quantitative metrics validate the green aspects of the reported drug development processes.

4.
Angew Chem Int Ed Engl ; 62(30): e202304720, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37166367

RESUMO

Advancing the development of perfecting the use of polar organometallics in bio-inspired solvents, we report on the effective generation in batch of organosodium compounds, by the oxidative addition of a C-Cl bond to sodium, a halogen/sodium exchange, or by direct sodiation, when using sodium bricks or neopentylsodium in hexane as sodium sources. C(sp3 )-, C(sp2 )-, and C(sp)-hybridized alkyl and (hetero)aryl sodiated species have been chemoselectively trapped (in competition with protonolysis), with a variety of electrophiles when working "on water", or in biodegradable choline chloride/urea or L-proline/glycerol eutectic mixtures, under hydrous conditions and at room temperature. Additional benefits include a very short reaction time (20 s), a wide substrate scope, and good to excellent yields (up to 98 %) of the desired adducts. The practicality of the proposed protocol was demonstrated by setting up a sodium-mediated multigram-scale synthesis of the anticholinergic drug orphenadrine.

5.
Molecules ; 27(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36364422

RESUMO

Dimethindene is a selective histamine H1 antagonist and is commercially available as a racemate. Upon analyzing the synthetic pathways currently available for the industrial preparation of dimethindene, we set up a sustainable approach for the synthesis of this drug, switching from petroleum-based volatile organic compounds (VOCs) to eco-friendly solvents, such as 2-methyltetrahydrofuran (2-MeTHF) and cyclopentyl methyl ether (CPME) belonging to classes 3 and 2, respectively. Beyond decreasing the environmental impact of the synthesis (E-factor: 24.1-54.9 with VOCs; 12.2-22.1 with 2-MeTHF or CPME), this switch also improved the overall yield of the process (from 10% with VOCs to 21-22% with 2-MeTHF or CPME) and remarkably simplified the manual operations, working under milder conditions. Typical metrics applied at the first and second pass, according to the CHEM21 metrics toolkit, were also calculated for the whole synthetic procedure of dimethindene, and the results were compared with those of the classical procedure.


Assuntos
Dimetideno , Éteres Metílicos , Solventes , Histamina
6.
Org Biomol Chem ; 19(12): 2558-2577, 2021 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-33471017

RESUMO

Owing to a growing awareness towards environmental impact, the search for "greener", safer, and cost-effective solvents able to replace petroleum-derived solvents has never been greater today. In this context, the use of environmentally responsible solvents like water and the so-called deep eutectic solvents (DESs), constructed from bio-based compounds, has recently experienced important growth in several fields of sciences. This short review highlights the key features of the chemistry of water and (hydrated) DESs when applied to metal- and biocatalyzed transformations as well as to the synthesis of active pharmaceutical ingredients (APIs) and other biologically relevant compounds by providing, through discussion of all relevant literature over the past five years, a comparison of the outcomes of the reactions when carried out in one or the other solvent.


Assuntos
Enzimas/metabolismo , Metais/química , Compostos Orgânicos/síntese química , Compostos Orgânicos/metabolismo , Preparações Farmacêuticas/síntese química , Preparações Farmacêuticas/metabolismo , Água/química , Catálise , Enzimas/química , Estrutura Molecular , Compostos Orgânicos/química , Preparações Farmacêuticas/química , Solventes/química
7.
Org Biomol Chem ; 19(8): 1773-1779, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33543179

RESUMO

An efficient and selective N-functionalization of amides is first reported via a CuI-catalyzed Goldberg-type C-N coupling reaction between aryl iodides and primary/secondary amides run either in Deep Eutectic Solvents (DESs) or water as sustainable reaction media, under mild and bench-type reaction conditions (absence of protecting atmosphere). Higher activities were observed in an aqueous medium, though the employment of DESs expanded and improved the scope of the reaction to include also aliphatic amides. Additional valuable features of the reported protocol include: (i) the possibility to scale up the reaction without any erosion of the yield/reaction time; (ii) the recyclability of both the catalyst and the eutectic solvent up to 4 consecutive runs; and (iii) the feasibility of the proposed catalytic system for the synthesis of biologically active molecules.

8.
Angew Chem Int Ed Engl ; 60(19): 10632-10636, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33605516

RESUMO

Pd-catalyzed Negishi cross-coupling reactions between organozinc compounds and (hetero)aryl bromides have been reported when using bulk water as the reaction medium in the presence of NaCl or the biodegradable choline chloride/urea eutectic mixture. Both C(sp3 )-C(sp2 ) and C(sp2 )-C(sp2 ) couplings have been found to proceed smoothly, with high chemoselectivity, under mild conditions (room temperature or 60 °C) in air, and in competition with protonolysis. Additional benefits include very short reaction times (20 s), good to excellent yields (up to 98 %), wide substrate scope, and the tolerance of a variety of functional groups. The proposed novel protocol is scalable, and the practicability of the method is further highlighted by an easy recycling of both the catalyst and the eutectic mixture or water.

9.
Chemistry ; 26(40): 8742-8748, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32181938

RESUMO

We report the first transition metal catalyst- and ligand-free conjugate addition of lithium tetraorganozincates (R4 ZnLi2 ) to nitroolefins. Displaying enhanced nucleophilicity combined with unique chemoselectivity and functional group tolerance, homoleptic aliphatic and aromatic R4 ZnLi2 provide access to valuable nitroalkanes in up to 98 % yield under mild conditions (0 °C) and short reaction time (30 min). This is particularly remarkable when employing ß-nitroacrylates and ß-nitroenones, where despite the presence of other electrophilic groups, selective 1,4 addition to the C=C is preferred. Structural and spectroscopic studies confirmed the formation of tetraorganozincate species in solution, the nature of which has been a long debated issue, and allowed to unveil the key role played by donor additives on the aggregation and structure of these reagents. Thus, while chelating N,N,N',N'-tetramethylethylenediamine (TMEDA) and (R,R)-N,N,N',N'-tetramethyl-1,2-diaminocyclohexane (TMCDA) favour the formation of contacted-ion pair zincates, macrocyclic Lewis donor 12-crown-4 triggers an immediate disproportionation process of Et4 ZnLi2 into equimolar amounts of solvent-separated Et3 ZnLi and EtLi.

10.
Molecules ; 25(3)2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32013037

RESUMO

An unsubstituted 2-hydroxyphenylbenzimidazole has recently been included as a scaffold in a series of hybrids (including the hit compound PZ1) based on the framework of the acetylcholinesterase (AChE) inhibitor Donepezil, which is a new promising multi-target ligand in Alzheimer's disease (AD) treatment. Building upon these findings, we have now designed and completed the whole synthesis of PZ1 in the so-called deep eutectic solvents (DESs), which have emerged as an unconventional class of bio-renewable reaction media in green synthesis. Under optimized reaction conditions, the preparation of a series of 2-hydroxyphenylbenzimidazole-based nuclei has also been perfected in DESs, and comparison with other routes which employ toxic and volatile organic solvents (VOCs) provided. The functionalization of the aromatic ring can have implications on some important biological properties of the described derivatives and will be the subject of future studies of structure-activity relationships (SARs).


Assuntos
Benzimidazóis/síntese química , Donepezila/química , Solventes/síntese química , Benzimidazóis/química , Química Verde , Solventes/química , Relação Estrutura-Atividade
11.
Beilstein J Org Chem ; 16: 1915-1923, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32802208

RESUMO

We report that phenacyl azides are key compounds for a regiodivergent synthesis of valuable, functionalized imidazole (32-98% yield) and pyrimidine derivatives (45-88% yield), with a broad substrate scope, when using deep eutectic solvents [choline chloride (ChCl)/glycerol (1:2 mol/mol) and ChCl/urea (1:2 mol/mol)] as environmentally benign and non-innocent reaction media, by modulating the temperature (25 or 80 °C) in the presence or absence of bases (Et3N).

12.
Angew Chem Int Ed Engl ; 58(6): 1799-1802, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30516878

RESUMO

Direct palladium-catalysed cross-couplings between organolithium reagents and (hetero)aryl halides (Br, Cl) proceed fast, cleanly and selectively at room temperature in air, with water as the only reaction medium and in the presence of NaCl as a cheap additive. Under optimised reaction conditions, a water-accelerated catalysis is responsible for furnishing C(sp3 )-C(sp2 ), C(sp2 )-C(sp2 ), and C(sp)-C(sp2 ) cross-coupled products, in competition with protonolysis, within a reaction time of 20 s, in yields of up to 99 %, and in the absence of undesired dehalogenated/homocoupling side products even when challenging secondary organolithiums serve as the starting material. It is worth noting that the proposed protocol is scalable and the catalyst and water can easily and successfully be recycled up to 10 times, with an E-factor as low as 7.35.

13.
Chemistry ; 24(67): 17656-17659, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30230651

RESUMO

The use of a hydrophobic eutectic solvent based on dl-menthol and a naturally occurring acid such as acetic acid has been tested as an eco-friendly electrolyte medium in dye-sensitized solar cells. In the presence of a de-aggregating agent and a representative hydrophobic organic photosensitizer, the corresponding devices displayed relatively good power conversion efficiencies in very thin active layers. In particular, the higher cell photovoltage detected in comparison to devices based on toxic and volatile organic compounds may stem from a more efficient interface interaction, as suggested by electrochemical impedance spectroscopy studies showing greater charge recombination resistance and electron lifetime.

14.
Molecules ; 23(9)2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158491

RESUMO

A few symptomatic drugs are currently available for Alzheimer's Disease (AD) therapy, but these molecules are only able to temporary improve the cognitive capacity of the patients if administered in the first stages of the pathology. Recently, important advances have been achieved about the knowledge of this complex condition, which is now considered a multi-factorial disease. Researchers are, thus, more oriented toward the preparation of molecules being able to contemporaneously act on different pathological features. To date, the inhibition of acetylcholinesterase (AChE) and of ß-amyloid (Aß) aggregation as well as the antioxidant activity and the removal and/or redistribution of metal ions at the level of the nervous system are the most common investigated targets for the treatment of AD. Since many natural compounds show multiple biological properties, a series of secondary metabolites of plants or fungi with suitable structural characteristics have been selected and assayed in order to evaluate their potential role in the preparation of multi-target agents. Out of six compounds evaluated, 1 showed the best activity as an antioxidant (EC50 = 2.6 ± 0.2 µmol/µmol of DPPH) while compound 2 proved to be effective in the inhibition of AChE (IC50 = 6.86 ± 0.67 µM) and Aß1⁻40 aggregation (IC50 = 74 ± 1 µM). Furthermore, compound 6 inhibited BChE (IC50 = 1.75 ± 0.59 µM) with a good selectivity toward AChE (IC50 = 86.0 ± 15.0 µM). Moreover, preliminary tests on metal chelation suggested a possible interaction between compounds 1, 3 and 4 and copper (II). Molecules with the best multi-target profiles will be used as starting hit compounds to appropriately address future studies of Structure-Activity Relationships (SARs).


Assuntos
Antioxidantes/química , Fatores Biológicos/química , Inibidores da Colinesterase/química , Agregados Proteicos/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Antioxidantes/farmacologia , Fatores Biológicos/farmacologia , Inibidores da Colinesterase/farmacologia , Fungos/química , Humanos , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Pironas/química , Pironas/farmacologia , Metabolismo Secundário , Relação Estrutura-Atividade
15.
Molecules ; 22(1)2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28085112

RESUMO

An unprecedented, environmentally friendly, and faster method for the determination of Ochratoxin A (OTA) (a mycotoxin produced by several species of Aspergillus and Penicillium and largely widespread in nature, in wheat and derived products) has, for the first time, been set up and validated using choline chloride (ChCl)-based deep eutectic solvents (DESs) (e.g., ChCl/glycerol (1:2) and ChCl/ urea (1:2) up to 40% (w/w) water) as privileged, green, and biodegradable extraction solvents. This also reduces worker exposure to toxic chemicals. Results are comparable to those obtained using conventional, hazardous and volatile organic solvents (VOCs) typical of the standard and official methods. OTA recovery from spiked durum wheat samples, in particular, was to up to 89% versus 93% using the traditional acetonitrile-water mixture with a repeatability of the results (RSDr) of 7%. Compatibility of the DES mixture with the antibodies of the immunoaffinity column was excellent as it was able to retain up to 96% of the OTA. Recovery and repeatability for durum wheat, bread crumbs, and biscuits proved to be within the specifications required by the current European Commission (EC) regulation. Good results in terms of accuracy and precision were achieved with mean recoveries between 70% (durum wheat) and 88% (bread crumbs) and an RSDr between 2% (biscuits) and 7% (bread).


Assuntos
Análise de Alimentos , Ocratoxinas/isolamento & purificação , Solventes/química , Triticum/química , Aspergillus/química , Aspergillus/patogenicidade , Humanos , Ocratoxinas/química , Ocratoxinas/toxicidade , Penicillium/química , Penicillium/patogenicidade , Triticum/microbiologia , Água/química
16.
Angew Chem Int Ed Engl ; 56(34): 10200-10203, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28695616

RESUMO

In contrast to classic methods carried out under inert atmospheres with dry volatile organic solvents and often low temperatures, the addition of highly polar organometallic compounds to non-activated imines and nitriles proceeds quickly, efficiently, and chemoselectively with a broad range of substrates at room temperature and under air with water as the only reaction medium. Secondary amines and tertiary carbinamines are furnished in yields of up to and over 99 %. The significant solvent D/H isotope effect observed for the on-water nucleophilic additions of organolithium compounds to imines suggests that the on-water catalysis arises from proton transfer across the organic-water interface. The strong intermolecular hydrogen bonds between water molecules may play a key role in disfavoring protonolysis, which occurs extensively in other protic media such as methanol. This work lays the foundation for reshaping many fundamental s-block metal-mediated organic transformations in water.

17.
Org Biomol Chem ; 14(48): 11438-11445, 2016 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-27878162

RESUMO

Regio- and stereo-selective reduction of substituted 1,3-aryldiketones, investigated in the presence of different whole cell microorganisms, was found to afford ß-hydroxyketones or 1,3-diols in very good yields (up to 95%) and enantiomeric excesses (up to 96%). The enantiomerically enriched aldols, obtained with the opposite stereo-preference by baker's yeast and Lactobacillus reuteri DSM 20016 bioreduction, could then be diastereoselectively transformed into optically active syn- or anti-1,3-diols by a careful choice of the chemical reducing agent (diastereomeric ratio up to 98 : 2). The latter, in turn, were stereospecifically cyclized into the corresponding oxetanes in 43-98% yields and in up to 94% ee, thereby giving a diverse selection of stereo-defined 2,4-disubstituted aryloxetanes.


Assuntos
Éteres Cíclicos/metabolismo , Kluyveromyces/metabolismo , Enzimas , Éteres Cíclicos/química , Kluyveromyces/citologia , Limosilactobacillus reuteri/metabolismo , Saccharomyces cerevisiae/metabolismo , Estereoisomerismo
18.
Molecules ; 21(7)2016 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-27438810

RESUMO

A high-yield one-pot two-step synthesis of 2-aminoimidazoles (2-AI), exploiting an under-air heterocyclodehydration process between α-chloroketones and guanidine derivatives, and using deep eutectic solvents (DESs) as nonconventional, "green" and "innocent" reaction media, has been accomplished successfully. The combination of either glycerol or urea with choline chloride (ChCl) proved to be effective for decreasing the reaction time to about 4-6 h in contrast to the 10-12 h usually required for the same reaction run in toxic and volatile organic solvents and under an argon atmosphere. In addition, the use of the ChCl-urea as a DES also enables the direct isolation of triaryl-substituted 2-AI derivatives by means of a simple work-up procedure consisting in filtration and crystallization, and allows the recycle of the DES mixture. A plausible mechanism highlighting the potential role played by hydrogen bonding catalysis has also been illustrated.


Assuntos
Química Verde , Imidazóis/síntese química , Solventes/química , Estrutura Molecular
19.
J Org Chem ; 78(21): 11059-65, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24083540

RESUMO

The reaction of ortho-lithiated aryloxiranes with various enaminones straightforwardly affords new functionalized isochromanes as mixtures of two epimeric stereoisomers in reasonable to very good yields (50-90%). The two diastereomers, which show a high structural variability, can be easily separated by column chromatography.


Assuntos
Cromanos/química , Cromanos/síntese química , Compostos de Epóxi/química , Lítio/química , Estrutura Molecular , Estereoisomerismo
20.
Enzyme Microb Technol ; 163: 110164, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36455467

RESUMO

The development of biorefinery approaches is of great relevance for the sustainable production of valuable compounds. In accordance with circular economy principles, waste cooking oils (WCOs) are renewable resources and biorefinery feedstocks, which contribute to a reduced impact on the environment. Frequently, this waste is wrongly disposed of into municipal sewage systems, thereby creating problems for the environment and increasing treatment costs in wastewater treatment plants. In this study, regenerated WCOs, which were intended for the production of biofuels, were transformed through a chemo-enzymatic approach to produce hydroxy fatty acids, which were further used in polycondensation reaction for polyester production. Escherichia coli whole cell biocatalyst containing the recombinantly produced Elizabethkingia meningoseptica Oleate hydratase (Em_OhyA) was used for the biocatalytic hydration of crude WCOs-derived unsaturated free fatty acids for the production of hydroxy fatty acids. Further hydrogenation reaction and methylation of the crude mixture allowed the production of (R)- 10-hydroxystearic acid methyl ester that was further purified with a high purity (> 90%), at gram scale. The purified (R)- 10-hydroxystearic acid methyl ester was polymerized through a polycondensation reaction to produce the corresponding polyester. This work highlights the potential of waste products to obtain bio-based hydroxy fatty acids and polyesters through a biorefinery approach.


Assuntos
Ácidos Graxos , Poliésteres , Óleos , Biocombustíveis , Ácidos Graxos Insaturados , Culinária , Ésteres
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA