Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 42(4): 470-480, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35139659

RESUMO

BACKGROUND: Carmat bioprosthetic total artificial heart (Aeson; A-TAH) is a pulsatile and autoregulated device. The aim of this study is to evaluate level of hemolysis potential acquired von Willebrand syndrome after A-TAH implantation. METHODS: We examined the presence of hemolysis and acquired von Willebrand syndrome in adult patients receiving A-TAH support (n=10) during their whole clinical follow-up in comparison with control subjects and adult patients receiving Heartmate II or Heartmate III support. We also performed a fluid structure interaction model coupled with computational fluid dynamics simulation to evaluate the A-TAH resulting shear stress and its distribution in the blood volume. RESULTS: The cumulative duration of A-TAH support was 2087 days. A-TAH implantation did not affect plasma free hemoglobin over time, and there was no association between plasma free hemoglobin and cardiac output or beat rate. For VWF (von Willebrand factor) evaluation, A-TAH implantation did not modify multimers profile of VWF in contrast to Heartmate II and Heartmate III. Furthermore, fluid structure interaction coupled with computational fluid dynamics showed a gradually increase of blood damage according to increase of cardiac output (P<0.01), however, the blood volume fraction that endured significant shear stresses was always inferior to 0.03% of the volume for both ventricles in all regimens tested. An inverse association between cardiac output, beat rate, and high-molecular weight multimers ratio was found. CONCLUSIONS: We demonstrated that A-TAH does not cause hemolysis or AWVS. However, relationship between HMWM and cardiac output depending flow confirms relevance of VWF as a biological sensor of blood flow, even in normal range.


Assuntos
Coração Artificial , Doenças de von Willebrand , Adulto , Coração Artificial/efeitos adversos , Hemoglobinas , Hemólise , Humanos , Fator de von Willebrand
2.
Angiogenesis ; 24(3): 505-517, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33449299

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a respiratory disease associated with endotheliitis and microthrombosis. OBJECTIVES: To correlate endothelial dysfunction to in-hospital mortality in a bi-centric cohort of COVID-19 adult patients. METHODS: Consecutive ambulatory and hospitalized patients with laboratory-confirmed COVID-19 were enrolled. A panel of endothelial biomarkers and von Willebrand factor (VWF) multimers were measured in each patient ≤ 48 h following admission. RESULTS: Study enrolled 208 COVID-19 patients of whom 23 were mild outpatients and 189 patients hospitalized after admission. Most of endothelial biomarkers tested were found increased in the 89 critical patients transferred to intensive care unit. However, only von Willebrand factor antigen (VWF:Ag) scaled according to clinical severity, with levels significantly higher in critical patients (median 507%, IQR 428-596) compared to non-critical patients (288%, 230-350, p < 0.0001) or COVID-19 outpatients (144%, 133-198, p = 0.007). Moreover, VWF high molecular weight multimers (HMWM) were significantly higher in critical patients (median ratio 1.18, IQR 0.86-1.09) compared to non-critical patients (0.96, 1.04-1.39, p < 0.001). Among all endothelial biomarkers measured, ROC curve analysis identified a VWF:Ag cut-off of 423% as the best predictor for in-hospital mortality. The accuracy of VWF:Ag was further confirmed in a Kaplan-Meier estimator analysis and a Cox proportional Hazard model adjusted on age, BMI, C-reactive protein and D-dimer levels. CONCLUSION: VWF:Ag is a relevant predictive factor for in-hospital mortality in COVID-19 patients. More than a biomarker, we hypothesize that VWF, including excess of HMWM forms, drives microthrombosis in COVID-19.


Assuntos
COVID-19/sangue , COVID-19/mortalidade , Pandemias , SARS-CoV-2 , Fator de von Willebrand/metabolismo , Adulto , Idoso , Biomarcadores/sangue , Biomarcadores/química , COVID-19/fisiopatologia , Estudos Transversais , Endotélio Vascular/fisiopatologia , Feminino , Mortalidade Hospitalar , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Peso Molecular , Paris/epidemiologia , Modelos de Riscos Proporcionais , Multimerização Proteica , Índice de Gravidade de Doença , Trombose/sangue , Trombose/etiologia , Fator de von Willebrand/química
4.
ASAIO J ; 68(11): e173-e178, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36228635

RESUMO

The Aeson total artificial heart (A-TAH) has been developed for patients at risk of death from biventricular failure. We aimed to assess the inflammatory status in nine subjects implanted with the A-TAH in kinetics over one year. Laboratory assessment of leukocyte counts, inflammatory cytokines assay, and peripheral blood mononuclear cell collection before and after A-TAH implantation. Leukocyte counts were not significantly modulated according to time after A-TAH implantation (coefficient of the linear mixed effect model with 95% CI, -0.05 (-0.71 to -0.61); p = 0.44). We explored inflammatory cytokine after A-TAH and did not observe, at any time, a modified profile compared to pre-implantation values (all p -values > 0.05). Finally, we compared the distribution of circulating immune cell subpopulations identified based on sequential expression patterns for multiple clusters of differentiation. None of the population explored had significant modulation during the 12-month follow-up (all p -values > 0.05). In conclusion, using a cytokine multiplex assay combined with a flow cytometry approach, we demonstrated the absence of inflammatory signals in peripheral blood over a period of 12 months following A-TAH implantation.


Assuntos
Insuficiência Cardíaca , Transplante de Coração , Coração Artificial , Humanos , Transplante de Coração/efeitos adversos , Leucócitos Mononucleares , Coração Artificial/efeitos adversos , Insuficiência Cardíaca/cirurgia , Inflamação/etiologia , Citocinas
5.
Stem Cell Rev Rep ; 17(6): 2332-2337, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34622384

RESUMO

The Aeson® total artificial heart (A-TAH) has been developed as a total heart replacement for patients at risk of death from biventricular failure. We previously described endothelialization of the hybrid membrane inside A-TAH probably at the origin of acquired hemocompatibility. We aimed to quantify vasculogenic stem cells in peripheral blood of patients with long-term A-TAH implantation. Four male adult patients were included in this study. Peripheral blood mononuclear cells were collected before A-TAH implantation (T0) and after implantation at one month (T1), between two and five months (T2), and then between six and twelve months (T3). Supervised analysis of flow cytometry data confirmed the presence of the previously identified Lin-CD133+CD45- and Lin-CD34+ with different CD45 level intensities. Lin-CD133+CD45-, Lin-CD34+CD45- and Lin-CD34+CD45+ were not modulated after A-TAH implantation. However, we demonstrated a significant mobilization of Lin-CD34+CD45dim (p = 0.01) one month after A-TAH implantation regardless of the expression of CD133 or c-Kit. We then visualized data for the resulting clusters on a uniform manifold approximation and projection (UMAP) plot showing all single cells of the live Lin- and CD34+ events selected from down sampled files concatenated at T0 and T1. The three clusters upregulated at T1 are CD45dim clusters, confirming our results. In conclusion, using a flow cytometry approach, we demonstrated in A-TAH-transplanted patients a significant mobilization of Lin-CD34+CD45dim in peripheral blood one month after A-TAH implantation. Using a flow cytometry approach, we demonstrated in A-TAH transplanted patients a significant mobilization of Lin-CD34+CD45dim in peripheral blood one month after A-TAH implantation. This cell population could be at the origin of newly formed endothelial cells on top of hybrid membrane in Carmat bioprosthetic total artificial heart.


Assuntos
Células Endoteliais , Coração Artificial , Adulto , Antígenos CD34 , Humanos , Leucócitos Mononucleares , Masculino , Células-Tronco
6.
Stem Cell Rev Rep ; 17(2): 639-651, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33205351

RESUMO

Endothelial progenitor cells (EPCs) are involved in vasculogenesis and cardiovascular diseases. However, the phenotype of circulating EPCs remains elusive but they are more often described as CD34+KDR+. The aim of the study was to extensively characterize circulating potential vasculogenic stem cell candidates in two populations of patients with cardiovascular disease by powerful multidimensional single cell complementary cytometric approaches (mass, imaging and flow). We identified cellular candidates in one patient before and after bioprosthetic total artificial heart implantation and results were confirmed in healthy peripheral and cord blood by mass cytometry. We also quantified cellular candidates in 10 patients with different COVID-19 severity. Both C-TAH implantation and COVID-19 at critical stage induce a redistribution of circulating CD34+ and CD19+ sub-populations in peripheral blood. After C-TAH implantation, circulating CD34+ progenitor cells expressed c-Kit stem marker while specific subsets CD34+CD133-/+CD45-/dimc-Kit+KDR- were mobilized. KDR was only expressed by CD19+ B-lymphocytes and CD14+ monocytes subpopulations in circulation. We confirmed by mass cytometry this KDR expression on CD19+ in healthy peripheral and cord blood, also with a VE-cadherin expression, confirming absence of endothelial lineage marker on CD34+ subtypes. In COVID-19, a significant mobilization of CD34+c-Kit+KDR- cells was observed between moderate and critical COVID-19 patients regardless CD133 or CD45 expression. In order to better evaluate EPC phenotype, we performed imaging flow cytometry measurements of immature CD34+KDR+ cells in cord blood and showed that, after elimination of non-circular events, those cells were all CD19+. During COVID-19, a significant mobilization of CD19+KDR+ per million of CD45+ cells was observed between moderate and critical COVID-19 patients regardless of CD34 expression. CD34+c-Kit+ cells are mobilized in both cardiovascular disease described here. KDR cells in peripheral blood are CD19 positive cells and are not classic vasculogenic stem and/or progenitor cells. A better evaluation of c-Kit and KDR expressing cells will lead to the redefinition of circulating endothelial progenitors.Graphical abstract Central illustration figure. Multidimensional proteomic approach of endothelial progenitors demonstrate expression of KDR restricted to CD19 cells. Endothelial progenitor cells (EPCs) are involved in cardiovascular diseases, however their phenotype remains elusive. We elucidated here EPCs phenotype by a deep characterization by multidimensional single cell complementary cytometric approaches after Bioprosthetic total artificial heart implantation and during COVID-19. We showed a redistribution of circulating CD34+ and CD19+ sub-populations in both situations. None of the immature cell population expresses KDR. Mobilized CD34+ expressed c-Kit. Imaging flow cytometry demonstrated that CD34+KDR+ cells, after elimination of non-circular events, are all CD19+. Our results suggest a new definition of circulating EPCs and emphasize involvement of CD19 cells in cardiovascular disease.


Assuntos
Antígenos CD19/metabolismo , COVID-19/metabolismo , Células Progenitoras Endoteliais/metabolismo , Regulação da Expressão Gênica , Coração Artificial , SARS-CoV-2/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Células Progenitoras Endoteliais/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteômica
7.
Arthritis Rheumatol ; 73(11): 1976-1985, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33881229

RESUMO

OBJECTIVE: The clinical relevance of antiphospholipid antibodies (aPLs) in COVID-19 is controversial. This study was undertaken to investigate the prevalence and prognostic value of conventional and nonconventional aPLs in patients with COVID-19. METHODS: This was a multicenter, prospective observational study in a French cohort of patients hospitalized with suspected COVID-19. RESULTS: Two hundred forty-nine patients were hospitalized with suspected COVID-19, in whom COVID-19 was confirmed in 154 and not confirmed in 95. We found a significant increase in lupus anticoagulant (LAC) positivity among patients with COVID-19 compared to patients without COVID-19 (60.9% versus 23.7%; P < 0.001), while prevalence of conventional aPLs (IgG and IgM anti-ß2 -glycoprotein I and IgG and IgM anticardiolipin isotypes) and nonconventional aPLs (IgA isotype of anticardiolipin, IgA isotype of anti-ß2 -glycoprotein I, IgG and IgM isotypes of anti-phosphatidylserine/prothrombin, and IgG and IgM isotypes of antiprothrombin) was low in both groups. Patients with COVID-19 who were positive for LAC, as compared to patients with COVID-19 who were negative for LAC, had higher levels of fibrinogen (median 6.0 gm/liter [interquartile range 5.0-7.0] versus 5.3 gm/liter [interquartile range 4.3-6.4]; P = 0.028) and C-reactive protein (CRP) (median 115.5 mg/liter [interquartile range 66.0-204.8] versus 91.8 mg/liter [interquartile range 27.0-155.1]; P = 0.019). Univariate analysis did not show any association between LAC positivity and higher risks of venous thromboembolism (VTE) (odds ratio 1.02 [95% confidence interval 0.44-2.43], P = 0.95) or in-hospital mortality (odds ratio 1.80 [95% confidence interval 0.70-5.05], P = 0.24). With and without adjustment for CRP level, age, and sex, Kaplan-Meier survival curves according to LAC positivity confirmed the absence of an association with VTE or in-hospital mortality (unadjusted P = 0.64 and P = 0.26, respectively; adjusted hazard ratio 1.13 [95% confidence interval 0.48-2.60] and 1.80 [95% confidence interval 0.67-5.01], respectively). CONCLUSION: Patients with COVID-19 have an increased prevalence of LAC positivity associated with biologic markers of inflammation. However, LAC positivity at the time of hospital admission is not associated with VTE risk and/or in-hospital mortality.


Assuntos
COVID-19/complicações , Inibidor de Coagulação do Lúpus/sangue , Tromboembolia Venosa/etiologia , Idoso , Idoso de 80 Anos ou mais , COVID-19/sangue , COVID-19/mortalidade , Feminino , Mortalidade Hospitalar , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Fatores de Risco , Taxa de Sobrevida , Tromboembolia Venosa/sangue
8.
Thromb Haemost ; 120(9): 1313-1322, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32688422

RESUMO

Pulsatile Carmat bioprosthetic total artificial heart (C-TAH) is designed to be implanted in patients with biventricular end-stage heart failure. Since flow variation might contribute to endothelial dysfunction, we explored circulating endothelial biomarkers after C-TAH implantation in seven patients and compared the manual and autoregulated mode. Markers of endothelial dysfunction and regeneration were compared before and during a 6- to 9-month follow-up after implantation. The follow-up was divided into three periods (< 3, 3-6, and > 6 months) and used to estimate the temporal trends during the study period. A linear mixed model was used to analyze repeated measures and association between tested parameters according to the mode of C-TAH and the time. Relevance of soluble endoglin (sEndoglin) level increase has been tested on differentiation and migration potential of human vasculogenic progenitor cells (endothelial colony forming cells [ECFCs]). Normal sEndoglin and soluble endothelial protein C receptor (sEPCR) levels were found in patients after implantation with autoregulated C-TAH, whereas they significantly increased in the manual mode, as compared with pretransplant values (p = 0.005 and 0.001, respectively). In the autoregulated mode, a significant increase in the mobilization of cytokine stromal cell-derived factor 1 was found (p = 0.03). After adjustment on the mode of C-TAH, creatinine or C-reactive protein level, sEndoglin, and sEPCR, were found significantly associated with plasma total protein levels. Moreover, a significant decrease in pseudotubes formation and migration ability was observed in vitro in ECFCs receiving sEndoglin activation. Our combined analysis of endothelial biomarkers confirms the favorable impact of blood flow variation achieved with autoregulation in patients implanted with the bioprosthetic total artificial heart.


Assuntos
Bioprótese , Endotélio/patologia , Coração Artificial , Idoso , Biomarcadores/análise , Endoglina/análise , Receptor de Proteína C Endotelial/análise , Seguimentos , Insuficiência Cardíaca/terapia , Homeostase , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA