RESUMO
Bacterial and organic pollutants are major problems with potential adverse impacts on human health and the environment. A promising strategy to alleviate these impacts consists in designing innovative photocatalysts with a wider spectrum of application. In this paper, we report the improved photocatalytic and antibacterial activities of chemically precipitated Ag3PO4 microcrystals by the incorporation of W at doping levels 0.5, 1, and 2 mol %. The presence of W directly influences the crystallization of Ag3PO4, affecting the morphology, particle size, and surface area of the microcrystals. Also, the characterization via experimental and theoretical approaches evidenced a high density of disordered [AgO4], [PO4], and [WO4] structural clusters due to the substitution of P5+ by W6+ into the Ag3PO4 lattice. This leads to new defect-related energy states, which decreases the band gap energy of the materials (from 2.27 to 2.04 eV) and delays the recombination of e'-h⢠pairs, leading to an enhanced degradation process. As a result of such behaviors, W-doped Ag3PO4 (Ag3PO4:W) is a better visible-light photocatalyst than Ag3PO4, demonstrated here by the photodegradation of potential environmental pollutants. The degradation of rhodamine B dye was 100% in 4 min for Ag3PO4:W 1%, and for Ag3PO4, the obtained result was 90% of degradation in 15 min of reaction. Ag3PO4:W 1% allowed the total degradation of cephalexin antibiotic in only 4 min, whereas pure Ag3PO4 took 20 min to achieve the same result. For the degradation of imidacloprid insecticide, Ag3PO4:W 1% allowed 90% of degradation, whereas Ag3PO4 allowed 40%, both in 20 min of reaction. Moreover, the presence of W-dopant results in a 16-fold improvement of bactericidal performance against methicillin-resistant Staphylococcus aureus. The outstanding results using the Ag3PO4:W material demonstrated its potential multifunctionality for the control of organic pollutants and bacteria in environmental applications.
RESUMO
Reactions in a sealed glass tube between melted pyrazine (pyz) and a Cs(3)Re(6)Q(i)(7)Br(i)Br(a)(6).H(2)O inorganic rhenium cluster compound (Q = S, Se; "i" for inner and "a" for apical positions) containing [Re(6)Q(i)(7)Br(i)Br(a)(6)](3-) units led to the substitution of three apical bromine ligands by three pyrazine groups with the formation of 3 CsBr as a byproduct. The resulting fac-Re(6)Q(i)(7)Br(i)(pyz)(a)(3)Br(a)(3) building unit, based on a Re(6) metal atom cluster, is neutral and noncentrosymmetric and exhibits an ambivalent organic/inorganic nature owing to the opposite disposition of the three apical pyrazine groups versus the three apical bromine atoms. These compounds were characterized by single-crystal and powder X-ray diffraction, elemental and thermal analyses, and luminescence measurements. The crystal structure of fac-Re(6)Q(i)(7)Br(i)(pyz)(a)(3)Br(a)(3).xH(2)O (Q = S (1) and Se (2)) displays an original, neutral metal-organic framework based on the self-assembling of fac-Re(6)Q(i)(7)Br(i)(pyz)(a)(3)Br(a)(3) hybrid building units. The latter are held together by supramolecular interactions: pi-pi, hydrogen bonds (C-H...N, C-H...Br(a), and C-H...Br(i)), and van der Waals contacts. It gives rise to a honeycomb porous structure of parallel hollow open-ended channels wherein the water molecules are located. Their removal does not lead to the collapsing of the structural edifice. The channel walls are constituted by hydrogen atoms from pyrazine as well as apical bromine from the cluster unit. To our knowledge, the structures of 1 and 2 constitute with that of PTMTC (perchlorotriphenylmethyl functionalized by carboxylic group radicals) one of the rare examples of stable open frameworks stabilized by supramolecular interactions between neutral molecules. Moreover, 1 is the first example of luminescent Re(6) compound built up from a noncentrosymmetric Re(6)S(i)(7)Br(i) cluster core.
RESUMO
In this study, we investigate the structure, antifungal activity, and optical properties of ß-Ag2MoO4 using experimental and theoretical approaches. ß-Ag2MoO4 samples were prepared by a co-precipitation method using different solvents (water, ethanol and ammonia), and their antifungal activity against Candida albicans was investigated. The samples were characterized by X-ray diffraction, micro-Raman spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy with energy dispersive spectroscopy. The optical properties were investigated by UV-Vis spectroscopy and photoluminescence measurements at room temperature. The thermodynamic equilibrium shape of the ß-Ag2MoO4 crystals was determined based on the surface energies calculated using Wulff construction. The (011) orientation was the predominant surface in the morphology. The experimental morphology was obtained by varying the surface energy ratio for each facet. A large decrease in surface energy for the (111) surface provided the experimental morphology for crystals synthesized using water and ethanol as solvents; when the surface energies for both (011) and (001) surfaces increased, the crystal morphology obtained using ammonia as a solvent was reproduced. A correlation between the exposed surfaces and antifungal activity was revealed, and an explanation to this behavior that arises from different morphologies and structural data was provided. Theoretical calculations confirm the rationality of the experimental scheme and elucidate the underlying reason for the fungistatic and fungicidal activity against Candida albicans.